Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 5 + 52 + 53 + 53 + ...+ 549 + 550
5A = 5(50+51+52+53+...+549+550)
5A=51+52+53+54+...+550+551
5A-A=(51+52+53+54+...+550+551)-(50 + 51 + 52 + 53 + 53 + ...+ 549 + 550)
4A=551-1
A=(551-1):4
5A = 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^50 + 5^51
=> 4A = ( 5 + 5^2 + 5^3 + 5^4 + 5^5 +...+ 5^50 + 5^51 ) - ( 1 + 5 + 5^2 + 5^3 +...+ 5^49 + 5^50 )
=> 4A = 5^51 - 1
=> A = \(\frac{5^{51}-1}{4}\)
A= 1+5+5^2+5^3+...+5^51
=> 5A= 5+5^2+5^3+5^4+...+5^52
=> 5A - A= ( 5+5^2+5^3+5^4+...+5^52) -(1+5+5^2+5^3+...+5^51)
=> 4A = 5^52-1
=>A=(5^52-1)/4
5A=5+52+53+...+550+551
5A-A=551-1
A=551-1:4
tick mk nha cái kia sai rôi
\(A=1+2+2^2+...+2^{51}\)
\(2A=2+2^2+2^3+...+2^{52}\)
\(2A-A=\left(2+2^2+2^3+...+2^{52}\right)-\left(1+2+2^2+...+2^{51}\right)\)
\(A=2^{52}-1\)
\(B=5+5^2+5^3+...+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{101}\)
\(5B-B=\left(5^2+5^3+5^4+...+5^{101}\right)-\left(5+5^2+5^3+...+5^{100}\right)\)
\(4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
Ta có :A = 1 + 5 + 52 + 53 + .... + 549 + 550
=> 5A = 5 + 52 + 53 + .... + 550 + 551
=> 5A - A = 551 - 1
=> 4A = 551 - 1
=> A = \(\frac{5^{51}-1}{4}\)
Ta có:
A = 1+ 5 + 52 + 53 + ......... + 549 + 550
=> 5A = 5 + 52 + 53 + 54 +.......+ 549 + 550
Do đó: 5A - A = 551 - 1
Vậy A = \(\frac{5^{51}-1}{4}\)
A=1+5+5^2+5^3+...+5^50
5A=5+5^2+5^3+5^4+...+5^51
5A-A=5+5^2+5^3+5^4+...+5^51-1-5-5^2-5^3-...-5^50
4A=5^51-1
A=(5^51-1):4