Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5xy2 + 1/2 xy2 + 1/4 xy2 + (-1/2 )xy2 = (5 + 1/2 + 1/4 - 1/2 )xy2 = 21/4 xy2
Ta có:
C(x) = (5x2y - 4xy2 + 5x - 3) - (xyz - 4x2y + xy2 + 5x - 1)
= 5x2y - 4xy2 + 5x - 3 - xyz + 4x2y - xy2 - 5x + 1
= -xyz + 9x2y - 5xy2 - 2
Chọn C
a. x2 + 5x2 + (-3x2) = (1 + 5 – 3)x2 = 3x2
b. 5xy2 + 1/2 xy2 + 1/4 xy2 + (-1/2 )xy2 = (5 + 1/2 + 1/4 - 1/2 )xy2 = 21/4 xy2
c. 3x2y2z2 + x2y2z2 = (3 + 1) x2y2z2 = 4 x2y2z2
a. x2 + 5x2 + (-3x2) = (1 + 5 – 3)x2 = 3x2
b. 5xy2 + 1/2 xy2 + 1/4 xy2 + (-1/2 )xy2 = (5 + 1/2 + 1/4 - 1/2 )xy2 = 21/4 xy2
c. 3x2y2z2 + x2y2z2 = (3 + 1) x2y2z2 = 4 x2y2z2
a)M=3x2y-2xy2+2x2y+2xy+3xy2
=\(5x^2y+xy^2+2xy\)
N=2x2y+xy+xy2-4xy2-5xy
=\(2x^2y-3xy^2-4xy\)
b) M-N=(\(5x^2y+xy^2+2xy\))-(\(2x^2y-3xy^2-4xy\))
=\(5x^2y+xy^2+2xy\)\(-\)\(2x^2y+3xy^2+4xy\)
=\(3x^2y+4xy^2+6xy\)
M+N=\(5x^2y+xy^2+2xy\)\(+\)\(2x^2y-3xy^2-4xy\)
=\(7x^2y-2xy^2-2xy\)
c) Ta có P(x)=0
\(\Rightarrow\)6-2x=0
\(\Rightarrow\)x=3
Vậy x=3 là nghiệm của đa thức P(x)
a: \(=\dfrac{1}{9}xy\cdot\left(-27\right)x^6y^3=-3x^7y^4\)
b: \(A=\dfrac{1}{3}x^2y-xy^2+\dfrac{2}{3}x^2y+\dfrac{1}{2}xy+xy^2+1\)
=x^2y+1/2xy+1
Khi x=1 và y=-1 thì A=-1-1/2+1=-1/2
1: \(A=2x^3y^4-5x\cdot x^2y^4+xy^2\cdot x^2y^2=-2x^3y^4=-2\cdot\left(-1\right)^3\cdot\dfrac{1}{16}=\dfrac{1}{8}\)
2: \(B=9x^4y^6\cdot\left(-4xy\right)+19x^3y^5\cdot\left(-2\right)x^2y^2\)
\(=-36x^5y^7-38x^5y^7\)
\(=-74x^5y^7=-74\cdot\left(-1\right)^5\cdot2^7=9472\)
3: \(f\left(-1\right)=3\cdot\left(-1\right)^4+7\cdot\left(-1\right)^3+4\cdot\left(-1\right)^2-2\cdot\left(-1\right)-2=0\)
\(f\left(1\right)=3+7+4-2-2=10\)
a: \(Q=-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1\)
\(A=x^2y-3x+1-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{2}x^2y-\dfrac{7}{12}xy^2-3x\)
b: \(P=\dfrac{3}{4}xy^2+\dfrac{4}{9}x-\dfrac{7}{12}xy^2+\dfrac{4}{3}x-\dfrac{1}{2}x^2y-1=\dfrac{1}{6}xy^2+\dfrac{16}{9}x-\dfrac{1}{2}x^2y-1\)
\(5xy^2+\frac{1}{2}xy^2+\frac{1}{4}xy^2-\frac{1}{2}xy^2=5xy^2+\frac{1}{4}xy^2=\frac{21}{4}xy^2\)
học tốt