\(\sqrt{x^2+2x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2020

\(5-4x-\sqrt{x^2+2x+1}\)

\(=5-4x-\sqrt{\left(x+1\right)^2}\)

\(=5-4x-\left|x+1\right|\)(1)

+) Với x < -1

(1) = 5 - 4x - [ -( x + 1 ) ]

     = 5 - 4x - ( -x - 1 ) 

     = 5 - 4x + x + 1

     = 6 - 3x 

+) Với x ≥ -1

(1) = 5 - 4x - ( x + 1 )

     = 5 - 4x - x - 1

     = 4 - 5x

1 tháng 10 2020

5 - 4x - \(\sqrt{x^2+2x+1}\)

= 5 - 4x - \(\sqrt{\left(x-1\right)^2}\)

= 5 - 4x - x - 1

= - 5x + 4

7 tháng 9 2020

\(Q=\sqrt{x^2-4x+4}+\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(2-x\right)^2}\)

\(\Leftrightarrow\left|x+2\right|+\left|2-x\right|\ge\left|x+2+2-x\right|=4\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+2\right)\left(2-x\right)\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2\ge0\\2-x\ge0\end{cases}}\) hoặc \(\orbr{\begin{cases}x+2\le0\\2-x\le0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x\ge-2\\x\le2\end{cases}}\) hoặc \(\orbr{\begin{cases}x\le-2\\x\ge2\end{cases}}\left(vo-ly\right)\)

Vậy minQ = 4 \(\Leftrightarrow-2\le x\le2\)

7 tháng 9 2020

Bài 1 :

ĐKXĐ : \(x\ge2\)

\(2x+5=6\sqrt{2x-4}\)

\(\Leftrightarrow4x^2+20x+25=36\left(2x-4\right)\)

\(\Leftrightarrow4x^2+20x+25-72x+144=0\)

\(\Leftrightarrow4x^2-52x+159=0\)

Đến đây chịu :))

10 tháng 10 2019

Câu 1: Sửa lạ đề chút nhé : 4x + 1  -> 4x -1 

 Đặt A = \(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

=>  \(\sqrt{2}.A\)= ​\(\sqrt{4x-1+2\sqrt{4x-1}+1}+\sqrt{4x-1-2\sqrt{4x-1}+1}\)

\(\sqrt{\left(\sqrt{4x-1}+1\right)^2}+\sqrt{\left(\sqrt{4x-1}-1\right)^2}\)

\(\left|\sqrt{4x-1}+1\right|+\left|\sqrt{4x-1}-1\right|\)

Vì \(\frac{1}{4}< x< \frac{1}{2}\Rightarrow0< 4x-1< 1\Rightarrow0< \sqrt{4x-1}< 1\)

nên \(\sqrt{2}A=\)\(\sqrt{4x-1}+1+1-\sqrt{4x-1}\)=2

=> \(A=2:\sqrt{2}=\sqrt{2}\)

Câu 2. Có: \(9-4\sqrt{2}=8-2.2\sqrt{2}+1=\left(2\sqrt{2}-1\right)^2\)

=> \(\sqrt{9-4\sqrt{2}}=2\sqrt{2}-1\)

=> ​\(4+\sqrt{9-4\sqrt{2}}=4+2\sqrt{2}-1=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)

=> \(\sqrt{4+\sqrt{9-4\sqrt{2}}}=\sqrt{2}+1\)

=> \(53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}=53-20\left(\sqrt{2}+1\right)=33-2.10\sqrt{2}=5^2-2.5.2\sqrt{2}+8=\left(5-2\sqrt{2}\right)^2\)

=> \(\sqrt{53-20\sqrt{4+\sqrt{9-4\sqrt{2}}}}=5-2\sqrt{2}\)

\(\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\)

28 tháng 7 2016

a)\(x+3+\sqrt{x^2-6x+9}\)

\(=x+3+\sqrt{\left(x-3\right)^2}\)

\(=x+3+x-3\)

\(=2x\)

b)\(\sqrt{x^2+4x+4}-\sqrt{x^2}\)

\(=\sqrt{\left(x+2\right)^2}-x\)

\(=x+2-x\)

=2

c)\(\sqrt{\frac{x^2-2x+1}{x-1}}\)

\(=\sqrt{\frac{\left(x-1\right)^2}{x-1}}\)

\(=\sqrt{x-1}\)

25 tháng 7 2020

\(\sqrt{4\left(1-x\right)^2}-6=0\) 

<=> \(\left|2\left(1-x\right)\right|=6\)

TH1: x \(\ge\)1 Khi đó pt trở thành:

\(2\left(x-1\right)=6\)

<=> x - 1 = 3

<=> x = 4 (tm)

TH2: x < 1, khi đó pt trở thành:

2(1 - x) = 6

<=> 1 - x = 3

<=> x = -2(tm)

vậy S= {4; -2}

25 tháng 7 2020

Trả lời:

\(\sqrt{4\left(1-x\right)^2}-6=0\)

\(\Leftrightarrow2.\left|1-x\right|=6\)

\(\Leftrightarrow\left|1-x\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=3\\1-x=-3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=4\end{cases}}\)

Vậy \(x=\left\{-2,4\right\}\)

\(\sqrt{4x^2+4x+1}=x+2\)\(\left(x\ge-2\right)\)

\(\Leftrightarrow4x^2+4x+1=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+4x+1=x^2+4x+4\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=-1\left(TM\right)\end{cases}}\)

Vậy \(x=\left\{1,-1\right\}\)

\(\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{20-12\sqrt{5}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{\sqrt{3}-2\sqrt{5}+3}}\)