K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

\(b,\)\(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=1.\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(\Rightarrow B=2^{64}-1-2^{64}=-1\)

19 tháng 6 2019

a) Đặt \(A=\left(\frac{1}{2}+1\right).\left(\frac{1}{4}+1\right).\left(\frac{1}{16}+1\right)...\left(1+\frac{1}{2^{2n}}\right)\)

Rút gọn:  \(A=\frac{2+1}{2}.\frac{4+1}{4}.\frac{16+1}{16}...\frac{2^{2.n}+1}{2^{2.n}}=\frac{2^{2.0}+1}{2^{2.0}}.\frac{2^{2.1}+1}{2^{2.1}}.\frac{2^{2.2}+1}{2^{2.2}}...\frac{2^{2.n}+1}{2^{2.n}}\)

\(\Rightarrow A=\frac{\left(2^{2.0}+1\right).\left(2^{2.1}+1\right).\left(2^{2.2}+1\right)...\left(2^{2.n}+1\right)}{2^{2.0}.2^{2.1}.2^{2.2}...2^{2.n}}.\)

b) Đặt \(B=\left(2+1\right).\left(2^2+1\right).\left(2^4+1\right).\left(2^8+1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2-1\right).\left(2+1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^2-1\right).\left(2^2+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^4-1\right).\left(2^4+1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}=\left(2^8-1\right).\left(2^8+1\right)...\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=\left(2^{16}-1\right).\left(2^{16}+1\right).\left(2^{32}+1\right)-2^{64}=\left(2^{32}-1\right).\left(2^{32}+1\right)-2^{64}\)

\(\Leftrightarrow B=2^{64}-1-2^{64}=-1\)Vậy B =-1.

4 tháng 8 2016

[Toán 8] Rút gọn $ (3^2+1)(3^4+1)(3^8+1)(3^16+1)(3^32+1)$ | HOCMAI Forum - Cộng đồng học sinh Việt Nam

25 tháng 5 2018

Phải là (2+1)(2²+1)(2⁴+1)...(2³²+1)- 2^64

(2+1)(2²+1)(2⁴+1)...(2³²+1)

=(2-1)(2+1)(2²+1)(2⁴+1)...(2³²+1)

=(2²-1)(2²+1)(2⁴+1)...(2³²+1)

=(2⁴-1)(2⁴+1)...(2³²+1)=…=2^64-1

Vậy C=-1

8 tháng 4 2020

\(3(2^2+1)(2^4+1)(2^8+1)(2^16 +1) \)

\( = (2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)\)

\( = (2^4-1)(2^4+1)(2^8+1)(2^16+1) \)

\( = (2^8-1)(2^8+1)(2^16+1) \)

\(= (2^16 -1)(2^16+1) = 2^32 - 1\)

8 tháng 4 2020

3(2^2 +1) (2^4 +1 ) (2^8 +1) (2^16 +1)

= (4-1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1)

= [(2^2-1)(2^2+1)] (2^4+1) (2^8+1)(2^16+1)

=(2^4 -1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

= (2^16-1)(2^16+1)

= 2^23 -1 

Chúc bạn học tốt

\(B=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{32}+1\right)-2^{64}\)

\(=\left(2^4-1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{32}+1\right)-2^{64}\)

\(=2^{64}-1-2^{64}=-1\)

1 tháng 12 2017

a)  (6x + 1)2 + (6x - 1)2 - 2(1 + 6x)(6x - 1) 

= (6x + 1 - 6x + 1)2 = 4

b) 3(22 + 1)(24 + 1)(28 + 1)(216 +1)

= (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

= (24 - 1)(24 + 1)(28 + 1)(216 + 1) 

= (28 - 1)(28 + 1)(216 + 1)

= (216 - 1)(216 + 1) = 232 - 1

18 tháng 12 2016

2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)

=(2^4-1)(2^4+1)(2^8+1)(2^16+1)

=(2^8-1)(2^8+1)(2^16+1)

=(2^16-1)(2^16+1)

=2^32-1

12 tháng 12 2017

2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)
=(2^4-1)(2^4+1)(2^8+1)(2^16+1)
=(2^8-1)(2^8+1)(2^16+1)
=(2^16-1)(2^16+1)
=2^32-1

chúc bn hok tốt @_@

10 tháng 10 2019

câu a là hằng đẳng thức luôn

A=(2x+4)^2

B khai triển tung tóe ra thì phần sau triệt tiêu hết còn 4(a^2+b^2+c^2)

câu c cảm giác sai đề vì mấy câu này phải là (3x)^ ms ra hdt chứ nhỉ