Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
999 - 888 - 111 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111 + 111 - 111
= 0 + 111 - 111 + 111 - 111
= 111 - 111 + 111 - 111
= 0 + 111 - 111
= 111 - 111
= 0
Ta có :
\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
\(\Rightarrow3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4A=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
Đặt 4A = C
\(\Rightarrow3C=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C=3-\frac{1}{3^{99}}-\frac{100}{3^{100}}-\frac{100}{3^{99}}\)
\(\Rightarrow4C< 3\Rightarrow C< \frac{3}{4}\Rightarrow4A< \frac{3}{4}\Rightarrow A< \frac{3}{16}\left(đpcm\right)\)
\(C=2+2^2+...+2^{100}\)
\(2C=2^2+2^3+2^4+...+2^{101}\)
\(2C-C=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(C=2^{101}-2\)
Giải:
Ta có:2C=2²+2³+........+2^100+2^101
_
C=2+2²+..........+2^100
=>C=2^101-2
HOK TỐT
\(D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2014}{2015}\)
\(D=\frac{1\cdot2\cdot3\cdot...\cdot2014}{2\cdot3\cdot4\cdot...\cdot2015}=\frac{1}{2015}nhebn\)
(2/2-1/2).(3/3-1/3).(4/4-1/4)............(2015/2015-1/2015 )
1/2.2/3.3/4.....................2014/2015
=1/2015
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
1). Sx:-3/4 ; 1/-4 ; 2/5 ; 4/9
2). \(\frac{2.5.13}{26.35}+\frac{24.5-24}{4-28}+\frac{123.6+123.4}{3-126}=\frac{2.5.13}{2.13.5.7}+\frac{24.\left(5-1\right)}{4.\left(1-7\right)}+\frac{123.\left(6+4\right)}{-123}=\frac{1}{7}+4-10=\frac{1}{7}+\frac{42}{7}=\frac{43}{7}\)
`A=1+4+4^2+4^3+....+4^99+4^100`
`=>4A=4+4^2+4^3+4^4+...+4^100+4^101`
`=>4A-A=4^101-1`
`=>3A=4^101-1`
`=>A=(4^101-1)/3`
Ta có: \(A=1+4+4^2+...+4^{99}+4^{100}\)
\(\Leftrightarrow4\cdot A=4+4^2+4^3+...+4^{100}+4^{101}\)
\(\Leftrightarrow4\cdot A-A=4^{101}-1\)
hay \(A=\dfrac{4^{101}-1}{3}\)