2√3−6√8−223−68−2

2. x2+√xx−√x+1−2x+√x√xx2+xx...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

\(4,\sqrt{x}+2=x+2,\)

\(\Rightarrow\sqrt{x}+2-x-2=0\)

\(\Rightarrow x-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=1\end{cases}}}\)

\(\Rightarrow x\in\left\{0;1\right\}\)

1 cho biểu thứca rút gọn PP=( 2−2√x√x−3+5(√x+4)x−92−2xx−3+5(x+4)x−9) :( 1-5√x+35x+3)b tìm x để P<-1212c tìm MaxQ= P(x√x−8x+15√xx−8x+15x)2 cho biểu thứcA=√x+2√x+3−5x+√x−6+12−√xx+2x+3−5x+x−6+12−xa rútAb tìm x để √AA<Ac tìm x thuộc Z để A thuộc Z3 cho d y=( a-1) x+1a xác định hệ số a để ( d) đi A (2;5)b xác định a để (d) cắt trục hoành tại điểm có hoành độ là-2c vẽ đồ thị tìm...
Đọc tiếp

1 cho biểu thức

a rút gọn P

P=( 2−2√x√x−3+5(√x+4)x−92−2xx−3+5(x+4)x−9) :( 1-5√x+35x+3)

b tìm x để P<-1212

c tìm MaxQ= P(x√x−8x+15√xx−8x+15x)

2 cho biểu thức

A=√x+2√x+3−5x+√x−6+12−√xx+2x+3−5x+x−6+12−x

a rútA

b tìm x để √AA<A

c tìm x thuộc Z để A thuộc Z

3 cho d y=( a-1) x+1

a xác định hệ số a để ( d) đi A (2;5)

b xác định a để (d) cắt trục hoành tại điểm có hoành độ là-2

c vẽ đồ thị tìm được ở câu a,b trên cùng 1 tọa độ tìm giao điểm của B tại đường thẳng này

d tính diện tích tam giác có đỉnh là góc B và 2 đỉnh còm lại giao điểm của 2 đồ thị với trục hoành

4 giải hệ phương trình

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩2x−1+1Y+1=75x−1−2y+1=4{2x−1+1Y+1=75x−1−2y+1=4

3√x−1−1+1√y+1−x=13x−1−1+1y+1−x=1

−1√x+1−1−2√y+1−2=3−1x+1−1−2y+1−2=3

⎧⎪ ⎪ ⎪ ⎪ ⎪⎨⎪ ⎪ ⎪ ⎪ ⎪⎩x−x−12+y+323x−2y=4{x−x−12+y+323x−2y=4

giúp mình giải bài này với ạ mình đang cần gấp lắm ạ

0
NV
6 tháng 8 2020

5/

Đặt \(\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=a\ge0\\\sqrt{\frac{6}{x}-2x}=b\ge0\end{matrix}\right.\) \(\Rightarrow a^2+b^2=\frac{3}{x}\)

Pt trở thành:

\(a-1=\frac{a^2+b^2}{2}-b\)

\(\Leftrightarrow a^2+b^2-2a-2b+2=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2x-\frac{3}{x}}=1\\\sqrt{\frac{6}{x}-2x}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2-x-3=0\\2x^2+x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{3}{2}\)

NV
6 tháng 8 2020

4/

ĐKXĐ: \(x\ge\frac{1}{5}\)

\(\Leftrightarrow\frac{4x-3}{\sqrt{5x-1}+\sqrt{x+2}}=\frac{4x-3}{5}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3=0\Rightarrow x=\frac{3}{4}\\\sqrt{5x-1}+\sqrt{x+2}=5\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{5x-1}-3+\sqrt{x+2}-2=0\)

\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}+\frac{x-2}{\sqrt{x+2}+2}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}+\frac{1}{\sqrt{x+2}+2}\right)=0\)

\(\Leftrightarrow x=2\)