Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề yêu cầu tìm x ặ?
\(\left(x+2\right)\left(3x-1\right)+\left(x-1\right)\left(2-3x\right)=6\)
\(\Rightarrow3x^2-x+6x-2+2x-3x^2-2+3x=6\)
\(\Rightarrow\left(3x^2-3x^2\right)+\left(-x+6x+2x+3x\right)+\left(-2-2\right)=6\)
\(\Rightarrow10x-4=6\)
\(\Rightarrow10x=10\)
\(\Rightarrow x=1\)
Nếu đề là rút gọn thì làm như này nha:
A = 3(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2²-1)(2²+1)(2^4 + 1)....(2^64 + 1) + 1
= (2^4 - 1)(2^4 + 1)....(2^64 + 1) + 1
= (2^8 - 1).(2^8 + 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^16 - 1)(2^16 + 1)(2^32 + 1)(2^64 + 1) + 1
= (2^32 - 1)(2^32 + 1)(2^64 + 1) + 1
= (2^64 - 1)(2^64 + 1) + 1 = 2^128 - 1 + 1 = 2^128.
x/12-x/15=2/60
5x/60-4x/60=2/60
x=2
vây quãng đường tư nhà đến trường là 12 km
Giải:
Gọi thời gian tuấn đi đến trường mọi hôm là x. ( x > 0)
Ta có : s = 12x
Đổi: 2 phút = 1/30 giờ
Vậy : s = 15.( x - 1/30)
Ta có pt:
\(12x=15.\left(x-\frac{1}{30}\right)\)
\(\Rightarrow12x=15x-15.\frac{1}{30}=15x-\frac{1}{2}\)
\(\Rightarrow12x-15x=-\frac{1}{2}\Rightarrow-3x=-\frac{1}{2}\Rightarrow3x=\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}:3=\frac{1}{2}.\frac{1}{3}=\frac{1}{6}\left(h\right)\)
Thay x= 1/6 vào bt ta có:
\(s=12.\frac{1}{6}=2\left(km\right)\)
\(A=\left(x+2\right)^2+\left(x-2\right)^2\\ =x^2+4x+4+x^2-4x+4\\ =2x^2+8\)
Thay `x=-1/2` vào A ta có:
\(A=2\cdot\left(-\dfrac{1}{2}\right)^2+8=2\cdot\dfrac{1}{4}+8=\dfrac{1}{2}+8=\dfrac{17}{2}\)
\(B=\left(3x-2\right)^2-\left(3x+5\right)^2\\ =\left(3x-2-3x-5\right)\left(3x-2+3x+5\right)\\ =-7\left(6x+3\right)\)
Thay `x=-4` vào B ta có:
\(B=-7\cdot\left(6\cdot-4+3\right)=-7\cdot-21=147\)
\(C=\left(2x+5y\right)^2-5y\left(4x+5y\right)\\ =4x^2+20xy+25y^2-20xy-25y^2\\ =4x^2\)
Thay `x=-1/2;y=-756` vào C ta có:
\(C=4\cdot\left(-\dfrac{1}{2}\right)^2=4\cdot\dfrac{1}{4}=1\)
\(D=\left(x+5\right)^2-\left(x-3\right)^2\\ =\left(x+5-x+3\right)\left(x+5+x-3\right)\\ =8\left(2x+2\right)\)
Thay `x=-3/4` vào D ta có:
\(D=8\cdot\left(2\cdot\dfrac{-3}{4}+2\right)=8\cdot\left(-\dfrac{3}{2}+2\right)=8\cdot\dfrac{1}{2}=4\)