\(T=3\sqrt{2}+2\sqrt{3}-\sqrt{18}+\sqrt{28-16\sqrt{3}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\sqrt{28-16\sqrt{3}}=\sqrt{12-2.4.2\sqrt{3}+16}=4-2\sqrt{3}\)

Do đó: \(T=3\sqrt{2}+2\sqrt{3}-3\sqrt{2}+4-2\sqrt{3}=4\)

28 tháng 5 2018

\(T=3\sqrt{2}+2\sqrt{3}-\sqrt{3^2.2}+\sqrt{4\left(4-4\sqrt{3}+3\right)}\)

=> \(T=3\sqrt{2}+2\sqrt{3}-3\sqrt{2}+\sqrt{2^2\left(2-\sqrt{3}\right)^2}\)

=> \(T=3\sqrt{2}+2\sqrt{3}-3\sqrt{2}+2\left(2-\sqrt{3}\right)\)

=> \(T=3\sqrt{2}+2\sqrt{3}-3\sqrt{2}+4-2\sqrt{3}\)

=> T=4

18 tháng 6 2017

2.

A=\(\sqrt{\sqrt{\left(\sqrt{16}-\sqrt{12}\right)^2}}-\sqrt{\sqrt{\left(\sqrt{16}+\sqrt{12}\right)^2}}\)

\(=\sqrt{4-2\sqrt{3}}-\sqrt{4+2\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{1}\right)^2}\)

\(=\sqrt{3}-1-\left(\sqrt{3}+1\right)\)

\(=\sqrt{3}-1-\sqrt{3}-1\)

\(=-2\)

B= \(\sqrt{5-2\sqrt{2+\sqrt{\left(\sqrt{8}+\sqrt{1}\right)^2}}}\)

\(=\sqrt{5-2\sqrt{2+\sqrt{8}+1}}\)

\(=\sqrt{5-2\sqrt{3+2\sqrt{2}}}\)

\(=\sqrt{5-2\sqrt{\left(\sqrt{2}+\sqrt{1}\right)^2}}\)

\(=\sqrt{5-2\sqrt{2}-2}\)

\(=\sqrt{3-2\sqrt{2}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{1}\right)^2}\)

\(=\sqrt{2}-1\)

13 tháng 8 2016

a) \(\frac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}=\frac{\sqrt{6}+\sqrt{14}}{\sqrt{2}\left(\sqrt{6}+\sqrt{14}\right)}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}\)

b) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(\frac{\left(\sqrt{2}+1\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\sqrt{2}+1\)

 

2 tháng 9 2017

b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

= \(\sqrt{3.4-3\sqrt{7}}-\sqrt{3.4+3\sqrt{7}}\)

= \(\sqrt{3.\left(4-\sqrt{7}\right)}-\sqrt{3.\left(4+\sqrt{7}\right)}\)

= \(\sqrt{3}.\sqrt{4-\sqrt{7}}-\sqrt{3}.\sqrt{4+\sqrt{7}}\)

= \(\sqrt{3}.\left(\sqrt{4-\sqrt{7}}-\sqrt{4+\sqrt{7}}\right)\)

\(\)\(-2,449\)

2 tháng 9 2017

\(\sqrt{\dfrac{13}{4}+\sqrt{3}}-\sqrt{\dfrac{7}{4}-\sqrt{3}}\)

= \(\sqrt{\dfrac{13}{4}+\dfrac{4\sqrt{3}}{4}}-\sqrt{\dfrac{7}{4}-\dfrac{4\sqrt{3}}{4}}\)

= \(\sqrt{\dfrac{13+4\sqrt{3}}{4}}-\sqrt{\dfrac{7-4\sqrt{3}}{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}}{\sqrt{4}}-\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

= \(\dfrac{\sqrt{13+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}}{\sqrt{4}}\)

\(2,098\)

13 tháng 8 2016

\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

21 tháng 6 2017

b) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

= \(\dfrac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\) = \(1+\sqrt{2}\)

21 tháng 6 2017

a) \(\dfrac{\sqrt{6}+\sqrt{14}}{2\sqrt{3}+\sqrt{28}}\) = \(\dfrac{\sqrt{2}\left(\sqrt{3}+\sqrt{7}\right)}{2\left(\sqrt{3}+\sqrt{7}\right)}\) = \(\dfrac{\sqrt{2}}{2}\)