Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)
\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)
\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)
\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ
\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)
\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)
\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)
\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)
#Học tốt ạ
a: \(=2\cdot3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
b: \(=5\sqrt{10}+2\cdot5-5\sqrt{10}=10\)
c: \(=2\sqrt{7}\cdot\sqrt{7}-\sqrt{12}\cdot\sqrt{7}-\sqrt{7}\cdot\sqrt{7}+2\sqrt{21}=2\cdot7-7=7\)
d: \(=\left(2\sqrt{11}-3\sqrt{2}\right)\cdot\sqrt{11}+3\sqrt{22}=2\cdot11=22\)
Bài 3:
a) Ta có: \(4+2\sqrt{3}\)
\(=3+2\cdot\sqrt{3}\cdot1+1\)
\(=\left(\sqrt{3}+1\right)^2\)
b) Ta có: \(7+4\sqrt{3}\)
\(=4+2\cdot2\cdot\sqrt{3}+3\)
\(=\left(2+\sqrt{3}\right)^2\)
c) Ta có: \(9+4\sqrt{5}\)
\(=5+2\cdot\sqrt{5}\cdot2+4\)
\(=\left(\sqrt{5}+2\right)^2\)
d) Ta có: \(31+10\sqrt{6}\)
\(=25+2\cdot5\cdot\sqrt{6}+6\)
\(=\left(5+\sqrt{6}\right)^2\)
e) Ta có: \(13+4\sqrt{3}\)
\(=12+2\cdot2\sqrt{3}\cdot1+1\)
\(=\left(2\sqrt{3}+1\right)^2\)
g) Ta có: \(21+12\sqrt{3}\)
\(=12+2\cdot2\sqrt{3}\cdot3+9\)
\(=\left(2\sqrt{3}+3\right)^2\)
h) Ta có: \(29+12\sqrt{5}\)
\(=20+2\cdot2\sqrt{5}\cdot3+3\)
\(=\left(2\sqrt{5}+3\right)^2\)
i) Ta có: \(49+8\sqrt{3}\)
\(=48+2\cdot4\sqrt{3}\cdot1\)
\(=\left(4\sqrt{3}+1\right)^2\)
k) Sửa đề: \(14-6\sqrt{5}\)
Ta có: \(14-6\sqrt{5}\)
\(=9-2\cdot3\cdot\sqrt{5}+5\)
\(=\left(3-\sqrt{5}\right)^2\)
l) Ta có: \(23-8\sqrt{7}\)
\(=16-2\cdot4\cdot\sqrt{7}+7\)
\(=\left(4-\sqrt{7}\right)^2\)
m) Ta có: \(15-4\sqrt{11}\)
\(=11-2\cdot\sqrt{11}\cdot2+4\)
\(=\left(\sqrt{11}-2\right)^2\)
n) Sửa đề: \(28-10\sqrt{3}\)
Ta có: \(28-10\sqrt{3}\)
\(=25-2\cdot5\cdot\sqrt{3}+3\)
\(=\left(5-\sqrt{3}\right)^2\)
o) Ta có: \(17-12\sqrt{2}\)
\(=9-2\cdot3\cdot2\sqrt{2}+8\)
\(=\left(3-2\sqrt{2}\right)^2\)
p) Ta có: \(43-30\sqrt{2}\)
\(=25-2\cdot5\cdot3\sqrt{2}+18\)
\(=\left(5-3\sqrt{2}\right)^2\)
q) Ta có: \(51-10\sqrt{2}\)
\(=50-2\cdot5\sqrt{2}\cdot1\)
\(=\left(5\sqrt{2}-1\right)^2\)
r) Ta có: \(49-12\sqrt{5}\)
\(=45-2\cdot3\sqrt{5}\cdot2+4\)
\(=\left(3\sqrt{5}-2\right)^2\)
\(2.3+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
\(5\sqrt{10}+2.5-5\sqrt{10}=10\)
\(14-2\sqrt{21}-7+2\sqrt{21}=7\)
\(33-3\sqrt{22}-11+3\sqrt{22}=22\)
\(A=\left(2-\sqrt{3}\right)\sqrt{4+2.2.\sqrt{3}+3}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=1\)
các câu còn lại làm tương tự nhé bạn !
1) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}-10-5\sqrt{10}\)
\(=-10\)
2) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(=14-2\sqrt{21}-7+2\sqrt{21}\)
\(=7\)
3) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\) (hẳn đề là như thế này)
\(=33-3\sqrt{22}-11+3\sqrt{22}\)
\(=22\)
\(\sqrt{5-\sqrt{21}}=\sqrt{\frac{1}{2}}.\sqrt{10-2\sqrt{21}}=\sqrt{\frac{1}{2}}.\sqrt{3-2\sqrt{3}\sqrt{7}+7}=\sqrt{\frac{1}{2}}\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{\frac{1}{2}}.\sqrt{7}-\sqrt{\frac{1}{2}}.\sqrt{3}=\sqrt{3,5}-\sqrt{1,5}\)
\(\sqrt{7+3\sqrt{5}}=\sqrt{\frac{1}{2}\left(14+2.3\sqrt{5}\right)}=\sqrt{\frac{1}{2}\left(5+2.3\sqrt{5}+3^2\right)}=\sqrt{\frac{1}{2}\left(3+\sqrt{5}\right)^2}=\sqrt{\frac{1}{2}}\left(3+\sqrt{5}\right)=\sqrt{4,5}+\sqrt{2,5}\)
\(\sqrt{49+5\sqrt{96}}=\sqrt{49+2.2.5\sqrt{6}}=\sqrt{2^2.6+2.2.5\sqrt{6}+5^2}=\sqrt{\left(5+2\sqrt{6}\right)^2}=5+2\sqrt{6}\)
\(\sqrt{5-\sqrt{21}}=\frac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7\cdot3}+3}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{2}}\)
\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+6\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2\cdot3\sqrt{5}+4}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)
\(\sqrt{49+5\sqrt{96}}=\sqrt{49+5\sqrt{4\cdot24}}=\sqrt{25+2\cdot5\sqrt{24}+24}=\sqrt{\left(5+\sqrt{24}\right)^2}=5+\sqrt{24}\)
\(\sqrt{51-7\sqrt{8}}=\sqrt{51-7\sqrt{2^2\cdot2}}=\sqrt{49-2\cdot7\sqrt{2}+2}=\sqrt{\left(7+\sqrt{2}\right)^2}=7+\sqrt{2}\)
\(\sqrt{28+5\sqrt{12}}=\sqrt{28+5\sqrt{2^2\cdot3}}=\sqrt{25+2\cdot5\sqrt{3}+3}=\sqrt{\left(5+\sqrt{3}\right)^2}=5+\sqrt{3}\)
\(\sqrt{12-3\sqrt{12}}=\sqrt{12-3\sqrt{2^2\cdot3}}=\sqrt{9-2\cdot3\sqrt{3}+3}=\sqrt{\left(3+\sqrt{3}\right)^2}=3+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+1\right)\)
Chúc bạn học tốt nha.