\(\sqrt{4-\sqrt{15}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2022

\(\sqrt{4-\sqrt{15}}=\dfrac{\sqrt{2}.\sqrt{4-\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{8-2\sqrt{15}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}}{\sqrt{2}}=\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}=\dfrac{\sqrt{10}-\sqrt{6}}{2}\)

2 tháng 8 2022

ngu thế

1 tháng 10 2017

\(A=\sqrt{8-2\sqrt{15}}=\sqrt{5-2\sqrt{15}+3}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}=\left|\sqrt{5}-\sqrt{3}\right|=\sqrt{5}-\sqrt{3}\)

\(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{4+\sqrt{7}}\sqrt{4-\sqrt{7}}-\sqrt{\left(4-\sqrt{7}\right)^2}\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}-\left|4-\sqrt{7}\right|\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=\sqrt{16-7}-4+\sqrt{7}\)

\(\Leftrightarrow\sqrt{4-\sqrt{7}}B=3-4+\sqrt{7}=-1+\sqrt{7}\)

\(\Leftrightarrow B=\frac{-1+\sqrt{7}}{\sqrt{4-\sqrt{7}}}\)

tíck mình nha bn thanks !!!!!!!!!!

1 tháng 10 2017

cảm ơn b nhìu nha mik k giùm b rr đó

22 tháng 7 2016

a) Đặt A=\(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)

<=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)=\(\sqrt{\left(\sqrt{7}+1\right)^2}-\sqrt{\left(\sqrt{7}-1\right)^2}\)

\(\sqrt{7}+1-\sqrt{7}+1=2\)

=> \(A=\frac{2}{\sqrt{2}}\sqrt{2}\)

b) Ta đặt \(B=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

=> \(B^2=8+2\sqrt{16-\left(10+2\sqrt{5}\right)}\)

             =  \(8+2\sqrt{6-2\sqrt{5}}=8+2\sqrt{5-2\sqrt{5}+1}\)=\(8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}\)

\(5+2\sqrt{5}+1=\left(\sqrt{5}+1\right)^2\)

=>  B=\(\sqrt{5}+1\)

c) Ta xét \(A=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}\)

=> \(\sqrt{2}\cdot A=\sqrt{8+2\sqrt{3}\cdot\sqrt{5}}+\sqrt{8-2\sqrt{3}\cdot\sqrt{5}}\)

                 =  \(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

                =  \(\sqrt{3}+\sqrt{5}+\sqrt{5}-\sqrt{3}\)\(2\sqrt{5}\)

=> A=\(\sqrt{5}\)

Ta có : \(\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(A-\sqrt{6-2\sqrt{5}}\)

\(\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-\sqrt{5}+1\)=1

22 tháng 7 2016

Phần a) chỗ cuối viết thiếu dấu =.

Sẽ là A=\(\sqrt{2}\)nha

27 tháng 8 2020

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

28 tháng 8 2020

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

25 tháng 7 2020

Trả lời:

\(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\)

\(A^2=\left(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\right)^2\)

\(A^2=4+\sqrt{10+2\sqrt{5}}+2.\sqrt{4+\sqrt{10+2\sqrt{5}}}.\sqrt{4-\sqrt{10+2\sqrt{5}}}+4-\sqrt{10+2\sqrt{5}}\)

\(A^2=8+2\sqrt{16-10-2\sqrt{5}}\)

\(A^2=8+2\sqrt{6-2\sqrt{5}}\)

\(A^2=8+2\sqrt{5-2\sqrt{5}+1}\)

\(A^2=8+2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(A^2=8+2.\left(\sqrt{5}+1\right)\)

\(A^2=8+2\sqrt{5}-2\)

\(A^2=6+2\sqrt{5}\)

\(A^2=5+2\sqrt{5}+1\)

\(A^2=\left(\sqrt{5}+1\right)^2\)

\(A=\sqrt{5}+1\)

\(B=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{2}\sqrt{4+\sqrt{15}}+\sqrt{2}\sqrt{4-\sqrt{15}}-\sqrt{2}.2\sqrt{3-\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

\(\sqrt{2}B=\sqrt{5+2\sqrt{15}+3}+\sqrt{5-2\sqrt{15}+3}-2\sqrt{5-2\sqrt{5}+1}\)

\(\sqrt{2}B=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\sqrt{2}B=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\sqrt{5}+2\)

\(\sqrt{2}B=2\)

\(B=\sqrt{2}\)

25 tháng 7 2020

Cảm ơn bạn nhiều nha UvU 

29 tháng 7 2018

(\(\sqrt{8-2\sqrt{15}}\)\(\sqrt{8+2\sqrt{15}}\)-  \(2\sqrt{6-2\sqrt{5}}\))/2

= (\(\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)\(\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\)-  \(2\sqrt{\left(\sqrt{5}-1\right)^2}\))/2

= ( \(\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}\)\(-2\sqrt{5}+2\)) / 2

= 2/2 = 1

29 tháng 7 2018

bài của   TuanMinhAms  sai nha

\(A=\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)

\(\Rightarrow\)\(\sqrt{2}A=\sqrt{8-2\sqrt{15}}+\sqrt{8+2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}\)

                       \(=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}\)

                       \(=\sqrt{5}-\sqrt{3}+\sqrt{5}+\sqrt{3}-2\left(\sqrt{5}-1\right)=2\)

\(\Rightarrow\)\(A=\sqrt{2}\)

13 tháng 8 2017

\(=\sqrt{\left(\sqrt{3}+2\right)^2}-\sqrt{\left(2\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+2-2\sqrt{3}+1\)

\(=3-\sqrt{3}\)

9 tháng 6 2019

a,A.√2= √(4+2√3)-√(4-2√3)

= √(1+√3)2 -√( √3 -1)2

= 1+√3-√3+1= 2 

=> A= 2/√2=√2

9 tháng 6 2019

B2= (4+√15)2.(4-√15).(√10-√6)2

= (4+√15).1.(16-4√15)

= (4+√15).(4-√15).4

= 4

=> B = √4 = 2

10 tháng 4 2018

\(A=-\sqrt{2}\) 

\(B=\sqrt{6}\)

\(C=2\)

18 tháng 5 2019

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)

\(\Leftrightarrow A=0\)