Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)
\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)
\(\Leftrightarrow C=-3\)
Ta có \(P=\left(\frac{\sqrt{14}-\sqrt{7}}{\sqrt{8}-2}-\frac{\sqrt{15}-\sqrt{3}}{2-2\sqrt{5}}\right):\frac{1}{\sqrt{7}-\sqrt{3}}\)
\(=\left(\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-\frac{\sqrt{3}\left(\sqrt{5}-1\right)}{2\left(1-\sqrt{5}\right)}\right).\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\left(\frac{\sqrt{7}}{2}+\frac{\sqrt{3}}{2}\right).\left(\sqrt{7}-\sqrt{3}\right)=\frac{\sqrt{7}+\sqrt{3}}{2}.\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\frac{7-3}{2}=2\)
Vậy \(P=2\)
+) Ta có: \(2\sqrt{75}-4\sqrt{27}+3\sqrt{12}\)
\(=2\sqrt{25}.\sqrt{3}-4\sqrt{9}.\sqrt{3}+3\sqrt{4}.\sqrt{3}\)
\(=10.\sqrt{3}-12.\sqrt{3}+6.\sqrt{3}\)
\(=4\sqrt{3}\approx6,9282\)
+) Ta có:\(\sqrt{x+6\sqrt{x-9}}\)
\(=\sqrt{x-9+6\sqrt{x-9}+9}\)
\(=\sqrt{\left(\sqrt{x-9}-3\right)^2}\)
\(=\left|\sqrt{x-9}-3\right|\)
\(\frac{2}{\sqrt{5}+\sqrt{3}}+\frac{1}{2-\sqrt{3}}=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}+\frac{2+\sqrt{3}}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}\)
\(=\frac{2\left(\sqrt{5}-\sqrt{3}\right)}{5-3}+\frac{2+\sqrt{3}}{4-3}=\sqrt{5}-\sqrt{3}+2+\sqrt{3}=\sqrt{5}+2\)
a). \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)
\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)
\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\)
ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC
\(\sqrt{16-6\sqrt{7}}-\sqrt{32+10\sqrt{7}}.\)
\(=\sqrt{9-6\sqrt{7}+7}-\sqrt{25+10\sqrt{7}+7}\)
\(=\sqrt{3^2-2.3.\sqrt{7}+\sqrt{7}^2}-\sqrt{5^2+2.5.\sqrt{7}+\sqrt{7^2}}\)
\(\sqrt{\left(3-\sqrt{7}\right)^2}-\sqrt{\left(5+\sqrt{7}\right)^2}\)
\(=3-\sqrt{7}-5-\sqrt{7}=-2-2\sqrt{7}\)
\(\sqrt{17-4}.\sqrt{9+4\sqrt{5}}\)
\(=\sqrt{13}.\sqrt{5+4\sqrt{5}+4}\)
\(=\sqrt{13}\left(\sqrt{5}+2\right)\)
\(=\sqrt{65}+2\sqrt{13}\)
con cacacacacacacacacacacacacacacacacacca
@@22@22@22@@222@@2@@2@@@2@2
a) \(\sqrt{39-12\sqrt{3}}+\sqrt{21-12\sqrt{3}}\)
\(=\sqrt{36-12\sqrt{3}+3}+\sqrt{9-12\sqrt{3}+12}\)
\(=\sqrt{\left(6-\sqrt{3}\right)^2}+\sqrt{\left(3-\sqrt{12}\right)^2}\)
\(=6-\sqrt{3}+\sqrt{12}-3=3+\sqrt{3}\)
b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)
\(=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)
\(=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)
\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
\(\sqrt{2}\sqrt{7-3\sqrt{5}}\)
\(\sqrt{14-6\sqrt{5}}\)
\(\sqrt{3^2-6\sqrt{5}+\sqrt{5}}\)
\(\sqrt{\left(3-\sqrt{5}\right)^2}\)
vì \(3-\sqrt{5}>0\)
\(\left|3-\sqrt{5}\right|\)
\(3-\sqrt{5}\)