K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

Ta có:\(\frac{a}{b}=\frac{3}{4}\left(1\right)\Rightarrow3b=4a\Rightarrow b=\frac{4a}{3}\left(2\right)\)Theo đề bài nếu cộng 15 đơn vị vào tử thì rút gọn thành \(\frac{7}{9}\)

                 \(\Rightarrow\frac{a+15}{b}=\frac{7}{9}\)\(\Rightarrow9\left(a+15\right)=7b\Rightarrow9a+135=7b\left(3\right)\)

Từ (1) và (2) suy ra:\(9a+135=7.\left(\frac{4a}{3}\right)\)

                               \(9a+135-\frac{28a}{3}=0\)

                                \(\frac{27a}{3}-\frac{28a}{3}+135=0\)

                                  \(135-\frac{a}{3}=0\)

                                   \(\frac{a}{3}=135\Rightarrow a=405\left(4\right)\)

Từ (1) và (4) ta được:\(\frac{405}{b}=\frac{3}{4}\)

                   \(\Rightarrow b=405.4:3=303,75\)

24 tháng 2 2017

mình vẫn chưa hiểu lắm,rắc rối quá

20 tháng 10 2021

Giúp ạ

5 tháng 8 2018

Bài 1:

\(\sqrt{24+8\sqrt{15}-\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{24+8\sqrt{15}-\left(\sqrt{5}-2\right)}\)

\(=\sqrt{26+8\sqrt{15}-\sqrt{5}}\)

Bài 2:

\(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\)

\(A=\sqrt{\frac{x^4+6x^2+9}{x^2}}\)

\(A=\frac{\sqrt{x^4+6x^2+9}}{\sqrt{x^2}}\)

\(A=\frac{\sqrt{\left(x^2+3\right)^2}}{x}\)

\(A=\frac{x^2+3}{x}\)

\(A=\frac{x^2+3}{x}+x-2\)

\(A=\frac{2x^2+3}{x}-2\)

wrecking ball sai rồi \(\frac{\sqrt{\left(x^2+3\right)^2}}{x}=\frac{trituyetdoix^2+3}{x}\) bằng 

Bài 2: 

a) Ta có: \(P=\left(\dfrac{1}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}}\right):\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-2}-\dfrac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\dfrac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\dfrac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}\)

\(=\dfrac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Ta có: \(P-\dfrac{1}{3}=\dfrac{\sqrt{a}-2}{3\sqrt{a}}-\dfrac{1}{3}\)

\(=\dfrac{\sqrt{a}-2-\sqrt{a}}{3\sqrt{a}}=\dfrac{-2}{3\sqrt{a}}< 0\forall a\) thỏa mãn ĐKXĐ

\(\Leftrightarrow P< \dfrac{1}{3}\)

23 tháng 4 2021

\(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}-\frac{3-\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{3+\sqrt{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

23 tháng 4 2021

a, \(\frac{1}{3-\sqrt{7}}-\frac{1}{3+\sqrt{7}}=\frac{3+\sqrt[]{7}-3+\sqrt{7}}{\left(3-\sqrt{7}\right)\left(3+\sqrt{7}\right)}\)

\(=\frac{2\sqrt{7}}{9-7}=\sqrt{7}\)

DD
16 tháng 6 2021

\(A=\frac{n^2+4}{n+5}=\frac{n^2-25+29}{n+5}=n-5+\frac{29}{n+5}\) là phân số rút gọn được suy ra \(\frac{29}{n+5}\)là phân số rút gọn được. 

Khi đó \(\left(n+5,29\right)\ne1\)mà \(29\)là số nguyên tố nên ta có \(n+5=29k\Leftrightarrow n=29k-5\).

\(0\le29k-5< 2009\Rightarrow1\le k\le69\)

Vậy có \(69\)số tự nhiên \(n\)thỏa mãn.