K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

* Rút gọn biểu thức:

+ Ngoặc thứ nhất:

Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Ngoặc thứ hai:

Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

Do đó:

Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Tại Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8 , giá trị biểu thức bằng: Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

9 tháng 3 2022

chịu

26 tháng 5 2022

Tham khảo:

 

* Rút gọn biểu thức:

 

+ Ngoặc thứ nhất:

Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

+ Ngoặc thứ hai:

Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

Do đó:

Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

* Tại Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8 , giá trị biểu thức bằng: Giải bài 4 trang 130 SGK Toán 8 Tập 2 | Giải toán lớp 8

26 tháng 5 2022

Cảm ơn bạn nhiều nhé

13 tháng 11 2021

\(ĐK:x\ne0\)

Vậy tại x=0 thì k có gt nào của B thỏa mãn

17 tháng 4 2021

\(\dfrac{8-2x}{x^2+x-20}=-\dfrac{2\left(4-x\right)}{\left(4-x\right)\left(x+5\right)}=\dfrac{-2}{x+5}\)

Để biểu thức trên nhận giá trị dương khi 

\(x+5< 0\)do -2 < 0 

\(\Leftrightarrow x< -5\)

 

22 tháng 12 2023

a) ĐKXĐ: \(x\ne0;x\ne-2\)

b) \(S=\dfrac{\left(x+2\right)^2}{x}\cdot\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{x+2-x^2}{x+2}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{\left(x+2\right)\left(x+2-x^2\right)}{x}-\dfrac{x^2+6x+4}{x}\)

\(=\dfrac{x^2+2x-x^3+2x+4-2x^2-x^2-6x-4}{x}\)

\(=\dfrac{-x^3-2x^2-2x}{x}\)

\(=\dfrac{x\left(-x^2-2x-2\right)}{x}\)

\(=-x^2-2x-2\)

Với \(x=0\Rightarrow\) loại

Với \(x=1\), thay vào \(S\) ta được

\(S=-1^2-2\cdot1-2=-5\)

c) Có: \(S=-x^2-2x-2\)

\(=-\left(x^2+2x+2\right)\)

\(=-\left(x^2+2x+1\right)-1\)

\(=-\left(x+1\right)^2-1\)

Ta thấy: \(\left(x+1\right)^2\ge0\forall x\ne0;x\ne-2\)

\(\Rightarrow-\left(x+1\right)^2\le0\forall x\ne0;x\ne-2\)

\(\Rightarrow S=-\left(x+1\right)^2-1\le-1\forall x\ne0;x\ne-2\)

Dấu \("="\) xảy ra khi: \(x+1=0\Leftrightarrow x=-1\left(tmdk\right)\)

\(\text{#}\mathit{Toru}\)

29 tháng 7 2021

\(\dfrac{x^2-9y^2}{x^2-6xy+9y^2}\) tại x = 1 , y = -\(\dfrac{2}{3}\)

\(\dfrac{x^2-\left(3y\right)^2}{\left(x-3y\right)^2}\)

\(\dfrac{\left(x-3y\right)\left(x+3y\right)}{\left(x-3y\right)}\)

= (x + 3y)

 Thay x = 1 , y = -\(\dfrac{2}{3}\) vào 

   x + 3y 

= 1 +3 . -\(\dfrac{2}{3}\)

= -1

 Chúc bạn học tốt

29 tháng 7 2021

cảm ơn bạn 

8 tháng 8 2020

Bài làm:

Ta có: \(A=64-\left(x-4\right)\left(x^2+4x+16\right)\)

\(A=64-x^3+64\)

\(A=128-x^3\)

Tại \(x=-\frac{1}{2}\) ta được:

\(A=128-\left(-\frac{1}{2}\right)^3=\frac{1025}{8}\)

8 tháng 8 2020

A = 64 - ( x - 4 )( x2 + 4x + 16 )

A = 64 - ( x3 + 4x2 + 16x - 4x2 - 16x - 64 )

A = 64 - ( x3 - 64 )

A = 64 - x3 + 64

A = -x3 + 128

Thế x = -1/2 vào A ta được :

A = -(-1/2)3 + 128 = 1/8 + 128 = 1025/8

15 tháng 11 2021

\(\dfrac{x+y}{2\left(x+y\right)}=\dfrac{0}{2.0}=\dfrac{0}{0}???\)

15 tháng 11 2021

\(A=\dfrac{x+y}{2\left(x+y\right)}\left(đk:x+y\ne0\right)\)

Vậy với \(x+y=0\) thì \(A\in\varnothing\)