K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2020

\(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)

\(=\left(3x-2\right)^2+2\left(9x^2-4\right)+\left(3x+2\right)^2\)

\(=\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2\)

\(=\left(6x\right)^2\)

\(=36x^2\)

Thay: \(x=-\frac{1}{3}\) vào A ta có:

\(36.\left(-\frac{1}{3}\right)^2=36.\frac{1}{9}=4\)

b) \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

\(=\left(x+y-7-y+6\right)^2\)

\(=\left(x-1\right)^2\)

Thay x = 101 vào B ta có

\(\left(101-1\right)^2=100^2=10000\)

c) \(C=4x^2-20x+27\)

\(=\left(2x\right)^2-2.2x.5+25+2\)

\(=\left(2x-5\right)^2+2\)

Thay x = 52,5 vào C ta có:

\(\left(2.52,5-5\right)^2+2\)

\(=105^2+2\)

= 11027

P/s: K chắc!

22 tháng 9 2018

a, \(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)

      \(=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(3x-2\right)\left(3x+2\right)\)

      \(=\left(3x-2+3x+2\right)^2\)

      \(=36x^2=36.\left(-\frac{1}{3}\right)^2=4\)

b,  \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

        \(=\left[\left(x+y-7\right)-\left(y-6\right)\right]^2\)

        \(=\left(x-1\right)^2\)

        \(=\left(101-1\right)^2=10000\)

c, \(C=4x^2-20x+27\)

       \(=\left(2x\right)^2-2.2x.5+5^2+2\)

       \(=\left(2x-5\right)^2+2\)

       \(=\left(52,5.2-5\right)^2+2\)

        \(=100^2+2=10002\)

Bài này dễ mà chỉ dùng hằng đẳng thức thôi. Chúc bạn học tốt.

7 tháng 7 2018

Đề này đúng ra là tính nhé.

a. (3x-2)^2 +(3x+2)^2 + 2(9x^2) - 4 tại x= -1/3

Câu a sai đề nữa nè hum

Ta có:

\((3x-2)^2 + (3x+2)^2 + 2(9x^2-4) \)

\(= (9x^2 - 6x+4) + (9x^2+6x+4) + 2(9x^2 - 4)\)

\(= 2(9x^2+4) + 2(9x^2 -4) = 2.2.9x^2 \)

\(=36\cdot\dfrac{1}{9}=4\)

b. (x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2 tại x= 101

Ta có:

\((x + y-7)^2 - 2(x+y -7)(y-6) + (y-6)^2\)

\(= [(x+y-7) - (y-6)]^2\)

\(= (x - 1)^2 \)

\(=100^2=10000\)

c.4x^2 - 20x +27 tại 52,5

Ta có:

\(4x^2 - 20x +27\)

\(=(2x)^2 -2.2x.5 + 25 + 2 \)

\(=(2x-5)^2 + 2 \)

\(=100^2+2=10002\)

a) Ta có: \(\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2\)

\(=36x^2\)(1)

Thay \(x=-\dfrac{1}{3}\) vào biểu thức (1), ta được:

\(36\cdot\left(-\dfrac{1}{3}\right)^2=36\cdot\dfrac{1}{9}=4\)

b) Sửa đề: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

Ta có: \(\left(x+y-7\right)^2-2\cdot\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

\(=\left(x+y-7-y+6\right)^2\)

\(=\left(x-1\right)^2=100^2=10000\)

22 tháng 8 2020

b, B= 4x^2 - 20x + 27

= (2x)- 2.2x.5 + 52 + 2

= ( 2x-5)2 +2

=> thay số: ( 2.52,5 -5)2 + 2

= 1002 + 2

= 1002

a, 

22 tháng 8 2020

chắc sai đề rồi bn hình như phải là +(y-6)2

28 tháng 9 2018

Bài 1 bạn tách hằng đẳng thức ra rồi thay vào tính bình thường . Mình làm bài 2 nha.

D = ( x + y )2 - 6.( x + y ) - 5

Thay x + y = -9 vào D, ta có :

D = ( -9 )2 - 6.( -9 ) - 5 = 81 + 54 - 5 = 130

Bài 1: 

a: \(=\left(3x-2\right)^2+2\left(3x-2\right)\left(3x+2\right)+\left(3x+2\right)^2\)

\(=\left(3x-2+3x+2\right)^2=36x^2=36\cdot\dfrac{1}{9}=4\)

b: \(=\left(x+y-7-y+6\right)^2=\left(x-1\right)^2=100^2=10^4\)

c: \(C=4x^2-20x+27\)

\(=4x^2-20x+25+2\)

\(=\left(2x-5\right)^2+2\)

\(=\left(2\cdot52.5-5\right)^2+2=100^2+2=10002\)

19 tháng 10 2023

a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)

= x² + 3xy - 3x³ + 2y³ - xy + 3x³

= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³

= x² + 2xy + 2y³

Tại x = 5 và y = 4

M = 5² + 2.5.4 + 2.4³

= 25 + 40 + 2.64

= 65 + 128

= 193

b) N = x²(x + y) - y(x² - y²)

= x³ + x²y - x²y + y³

= x³ + (x²y - x²y) + y³

= x³ + y³

Tại x = -6 và y = 8

N = (-6)³ + 8³

= -216 + 512

= 296

c) P = x² + 1/2 x + 1/16

= (x + 1/2)²

Tại x = 3/4 ta có:

P = (3/4 + 1/2)² = (5/4)² = 25/16

a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)

\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)

\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)

\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)

\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)

\(=-12x^3+16x^2y-7xy^2\)

\(\left(x-2\right)^2+y^2=0\)

mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)

nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)

=>x=2 và y=0

Thay x=2 và y=0 vào F, ta được:

\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)

\(=-12\cdot2^3\)

\(=-12\cdot8=-96\)

b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)

\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)

\(=x^3+y^3+3\left(8x^3-y^3\right)\)

\(=x^3+y^3+24x^3-3y^3\)

\(=25x^3-2y^3\)

Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)

Thay x=5 và y=-3 vào G, ta được:

\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)

\(=25\cdot125-2\cdot\left(-27\right)\)

\(=3125+54=3179\)

c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)

\(=x^3+27y^3+27x^3-y^3\)

\(=28x^3-26y^3\)

Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)

Thay x=2 và y=1 vào H, ta được:

\(H=28\cdot2^3-26\cdot1^3\)

\(=28\cdot8-26\)

=198

14 tháng 6 2018

mình biết câu b rồi nhưng câu a thì chưa!

  b) x^3(x+y)-x^2(x^2+xy)-x(x-y)

    =x^4+x^3y-x^4-x^3y-x^2+xy

    =-x^2+xy tại x=10,y=-5 ta có;

     =-10^2+10(-5)

    = 50