K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2017

Tại a = -9 ta được:

= 3√-(-9) - |3 + 2(-9)|

= 3√32 - |3 - 18|

= 3.3 - |-15| = 9 - 15 = -6

17 tháng 5 2021
a) √ − 9 a − √ 9 + 12 a + 4 a 2 = √ − 9 a − √ 3 2 + 2.3 .2 a + ( 2 a ) 2 = √ 3 2 ⋅ ( − a ) − √ ( 3 + 2 a ) 2 = 3 √ − a − | 3 + 2 a | Thay a = − 9 ta được: 3 √ 9 − | 3 + 2 ⋅ ( − 9 ) | = 3.3 − 15 = − 6 . b) Điều kiện: m ≠ 2 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m m − 2 √ m 2 − 2.2 ⋅ m + 2 2 = 1 + 3 m m − 2 √ ( m − 2 ) 2 = 1 + 3 m | m − 2 | m − 2 +) m > 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 + 3 m . ( 1 ) +) m < 2 , ta được: 1 + 3 m m − 2 √ m 2 − 4 m + 4 = 1 − 3 m . ( 2 ) Với m = 1 , 5 < 2 . Thay vào biểu thức ( 2 ) ta có: 1 − 3 m = 1 − 3.1 , 5 = − 3 , 5 Vậy giá trị biểu thức tại m = 1 , 5 là − 3 , 5 . c) √ 1 − 10 a + 25 a 2 − 4 a = √ 1 − 2.1 .5 a + ( 5 a ) 2 − 4 a = √ ( 1 − 5 a ) 2 − 4 a = | 1 − 5 a | − 4 a +) Với a < 1 5 , ta được: 1 − 5 a − 4 a = 1 − 9 a . ( 3 ) +) Với a ≥ 1 5 , ta được: 5 a − 1 − 4 a = a − 1 . ( 4 ) Vì a = √ 2 > 1 5 . Thay vào biểu thức ( 4 ) ta có: a − 1 = √ 2 − 1 . Vậy giá trị của biểu thức tại a = √ 2 là √ 2 − 1 . d) 4 x − √ 9 x 2 + 6 x + 1 = 4 x − √ ( 3 x ) 2 + 2.3 x + 1 = 4 x − √ ( 3 x + 1 ) 2 = 4 x − | 3 x + 1 | +) Với 3 x + 1 ≥ 0 ⇔ x ≥ − 1 3 , ta có: 4 x − ( 3 x + 1 ) = 4 x − 3 x − 1 = x − 1 . ( 5 ) +) Với 3 x + 1 < 0 ⇔ x < − 1 3 , ta có: 4 x + ( 3 x + 1 ) = 4 x + 3 x + 1 = 7 x + 1 . ( 6 ) Vì x = − √ 3 < − 1 3 . Thay vào biểu thức ( 6 ) , ta có: 7 x + 1 = 7 . ( − √ 3 ) + 1 = − 7 √ 3 + 1 . Giá trị của biểu thức tại x = − √ 3 là − 7 √ 3 + 1
19 tháng 5 2021

a) \sqrt{-9a}-\sqrt{9+12 a+4 a^{2}}9a9+12a+4a2

=\sqrt{-9 a}-\sqrt{3^{2}+2.3 .2 a+(2 a)^{2}}=9a32+2.3.2a+(2a)2

=\sqrt{3^{2} \cdot(-a)}-\sqrt{(3+2 a)^{2}}=32(a)(3+2a)2

=3 \sqrt{-a}-|3+2 a|=3a3+2a

Thay a=-9a=9 ta được:

3 \sqrt{9}-|3+2 \cdot(-9)|=3.3-15=-6393+2(9)=3.315=6.

b) Điều kiện: m \neq 2m=2

1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}1+m23mm24m+4

=1+\dfrac{3 m}{m-2} \sqrt{m^{2}-2.2 \cdot m+2^{2}}=1+m23mm22.2m+22

=1+\dfrac{3 m}{m-2} \sqrt{(m-2)^{2}}=1+m23m(m2)2

=1+\dfrac{3 m|m-2|}{m-2}=1+m23mm2

+) m>2m>2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1+3 m1+m23mm24m+4=1+3m(1)(1)

+) m<2m<2, ta được: 1+\dfrac{3 m}{m-2} \sqrt{m^{2}-4 m+4}=1-3 m1+m23mm24m+4=13m(2)(2)

Với m=1,5<2m=1,5<2. Thay vào biểu thức (2)(2) ta có: 1-3 m=1-3.1,5=-3,513m=13.1,5=3,5

Vậy giá trị biểu thức tại m=1,5m=1,5 là -3,53,5.

c) \sqrt{1-10 a+25 a^{2}}-4a110a+25a24a

=\sqrt{1-2.1 .5 a+(5 a)^{2}}-4 a=12.1.5a+(5a)24a

=\sqrt{(1-5a)^{2}}-4 a=(15a)24a

=|1-5 a|-4 a=15a4a

+) Với a <\dfrac{1}{5}a<51, ta được: 1-5a-4 a=1-9a15a4a=19a(3)(3)

+) Với a \ge \dfrac{1}{5}a51, ta được: 5 a-1-4 a=a-15a14a=a1(4)(4)

Vì a=\sqrt{2}>\dfrac{1}{5}a=2>51. Thay vào biểu thức (4)(4) ta có: a-1=\sqrt{2}-1a1=21.

Vậy giá trị của biểu thức tại a=\sqrt{2}a=2 là \sqrt{2}-121.

d) 4 x-\sqrt{9 x^{2}+6 x+1}4x9x2+6x+1

=4 x-\sqrt{(3 x)^{2}+2.3 x+1}=4 x-\sqrt{(3 x+1)^{2}}=4x(3x)2+2.3x+1=4x(3x+1)2

=4 x-|3x+1|=4x3x+1

+) Với 3x+1 \geq 03x+10 \Leftrightarrow x \ge -\dfrac{1}{3}x31, ta có: 4 x-(3x+1)=4 x-3 x-1 =x-14x(3x+1)=4x3x1=x1(5)(5)

+) Với 3x+1<03x+1<0 \Leftrightarrow x <-\dfrac{1}{3}x<31, ta có: 4 x+(3 x+1)=4 x+3x+1=7x+14x+(3x+1)=4x+3x+1=7x+1(6)(6)

Vì x=-\sqrt{3}<-\dfrac{1}{3}x=3<31. Thay vào biểu thức (6)(6), ta có: 7 x+1=7 .(-\sqrt{3})+1=-7 \sqrt{3}+17x+1=7 .(3)+1=73+1.

Giá trị của biểu thức tại x=-\sqrt{3}x=3 là -7 \sqrt{3}+173+1.

27 tháng 10 2020

a) đk: \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)

Ta có: 

\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)

\(C=\frac{a-2\cdot\left(\sqrt{a}+4\right)-2\cdot\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(C=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(C=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)

b) Ta có: \(a=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)

\(\Rightarrow\sqrt{a}=\sqrt{5}-2\)

Khi đó: \(C=\frac{\sqrt{5}-2}{\sqrt{5}-2+4}=\frac{\sqrt{5}-2}{\sqrt{5}+2}=\frac{\left(\sqrt{5}-2\right)^2}{1}=9-4\sqrt{5}\)

27 tháng 10 2020

\(C=\frac{a}{a-16}-\frac{2}{\sqrt{a}-4}-\frac{2}{\sqrt{a}+4}\)

a) ĐKXĐ : \(\hept{\begin{cases}a\ge0\\a\ne16\end{cases}}\)

\(=\frac{a}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}+4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}-\frac{2\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{a-2\sqrt{a}-8-2\sqrt{a}+8}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{a-4\sqrt{a}}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-4\right)}{\left(\sqrt{a}-4\right)\left(\sqrt{a}+4\right)}=\frac{\sqrt{a}}{\sqrt{a}+4}\)

b) Với \(a=9-4\sqrt{5}\)( tmđk )

\(C=\frac{\sqrt{a}}{\sqrt{a}+4}=1-\frac{4}{\sqrt{a}+4}\)

\(C=1-\frac{4}{\sqrt{9-4\sqrt{5}}+4}\)

\(=1-\frac{4}{\sqrt{5-4\sqrt{5}+4}+4}\)

\(=1-\frac{4}{\sqrt{\left(\sqrt{5}-2\right)^2}+4}\)

\(=1-\frac{4}{\left|\sqrt{5}-2\right|+4}\)

\(=1-\frac{4}{\sqrt{5}-2+4}\)

\(=1-\frac{4}{\sqrt{5}+2}\)

\(=\frac{\sqrt{5}+2-4}{\sqrt{5}+2}\)

\(=\frac{\sqrt{5}-2}{\sqrt{5}+2}\)

\(=\frac{\left(\sqrt{5}-2\right)\left(\sqrt{5}-2\right)}{1}=9-4\sqrt{5}\)

29 tháng 10 2017

\(a,A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}.\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}.\)

\(A=\left(x-3\right)-\left(x+3\right)\)

\(b,\) Ta có : \(A=1=\left(x-3\right)-\left(x+3\right)\)

                                   \(\Leftrightarrow1=x-3-x-3\Leftrightarrow1=-6\left(ko\right)tm\)

Vậy ko có giá trị của x.

11 tháng 6 2018

mk ko biết đâu

mk mới hok lớp 5 thui

chúc bạn hok tốt nhé

kb với mk nha

19 tháng 7 2017

câu 2

\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)

câu 1

\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)

\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)

\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)

29 tháng 5 2021

\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)

\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)

\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)

b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)

\(TH1:x-3>=0\)

\(< =>x+3>=0\)

\(\left|x-3\right|-\left|x+3\right|=1\)

\(x-3-x-3=1\)

\(-6=1\)(loại)

\(TH2:x-3< =0\)

\(x+3>=0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x-x-3\)

\(-2x=1\)

\(x=-\frac{1}{2}\left(TM\right)\)

\(TH3:x-3< =0\)

\(x+3< =0\)

\(< =>\left|x-3\right|-\left|x+3\right|=1\)

\(3-x+X+3=1\)

\(6=1\)(loại)

\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)