K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Câu a, bạn coi lại đề xem $a^2=6-3\sqrt{3}$ hay $a=6-3\sqrt{3}$???

 

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

b.

\(B=\frac{\sqrt{(x-2)+(x+2)+2\sqrt{(x-2)(x+2)}}}{\sqrt{x^2-4}+x+2}\)

\(=\frac{\sqrt{(\sqrt{x-2}+\sqrt{x+2})^2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x^2-4}+x+2}=\frac{\sqrt{x-2}+\sqrt{x+2}}{\sqrt{x+2}(\sqrt{x-2}+\sqrt{x+2})}=\frac{1}{\sqrt{x+2}}\)

\(=\frac{1}{\sqrt{3+\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{6+2\sqrt{5}}}=\frac{\sqrt{2}}{\sqrt{(\sqrt{5}+1)^2}}=\frac{\sqrt{2}}{\sqrt{5}+1}\)

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Bài 1: Bạn đã post 1 lần

Bài 2:

\(C=\sqrt{(x-3)-2\sqrt{x-3}+1}-\sqrt{(x-3)-4\sqrt{x-3}+4}\)

\(=\sqrt{(\sqrt{x-3}-1)^2}-\sqrt{(\sqrt{x-3}-2)^2}\)

\(=|\sqrt{x-3}-1|-|\sqrt{x-3}-2|\)

Áp dụng BĐT dạng $|a|-|b|\leq |a-b|(*)$ thì:

$C\leq |\sqrt{x-3}-1-(\sqrt{x-3}-2)|$ hay $C\leq 1$

Vậy $C_{\max}=1$

Mặt khác, vẫn áp dụng BĐT $(*)$:

\(|\sqrt{x-3}-1|=|(\sqrt{x-3}-2-(-1)|\geq |\sqrt{x-3}-2|-|-1|\)

\(=|\sqrt{x-3}-2|-1\Rightarrow C\geq -1\)

Vậy $C_{\min}=-1$

 

a: Ta có: \(A=\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right)\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{x-4}{3\sqrt{x}}\)

\(=\dfrac{2}{3}\)

 

1:

\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)

2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)

\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)

\(=\dfrac{20-6}{2}=7\)

15 tháng 4 2022

\(a,A=\dfrac{1}{2-\sqrt{3}}+\dfrac{1}{2+\sqrt{3}}\)

\(=\dfrac{2+\sqrt{3}+2-\sqrt{3}}{2^2-\sqrt{3}^2}\)

\(=\dfrac{4}{1}=4\)

Vậy \(A=4\)

\(b,B=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\left(\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}\)

\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

Vậy \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\) với \(x>0,x\ne1\)

a: \(=2+\sqrt{3}+2-\sqrt{3}=4\)

b: \(=\dfrac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

NV
22 tháng 3 2022

\(A=2\left|2-\sqrt{5}\right|-\dfrac{8\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\)

\(=2\left(\sqrt{5}-2\right)-\dfrac{8\left(3+\sqrt{5}\right)}{4}=2\sqrt{5}-4-2\left(3+\sqrt{5}\right)\)

\(=2\sqrt{5}-4-6-2\sqrt{5}=-10\)

\(B=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}-2+2}{\sqrt{x}-2}\right)\)

\(=\left(\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}\right)\)

\(=\dfrac{1}{\sqrt{x}-2}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{\sqrt{x}}\)

\(A=\dfrac{3}{2\left(2x-1\right)}\cdot x^2\left|2x-1\right|\cdot2\sqrt{2}\)

\(=\pm3\sqrt{2}x^2\)

\(B=\dfrac{a-b}{b^2}\cdot\dfrac{b^2\cdot\left|a\right|}{\left|a-b\right|}\)

\(=\pm\left|a\right|\)