Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{1}{2}\cdot4\sqrt{3}+4\cdot3\sqrt{3}-2\cdot6\sqrt{3}\)
\(=2\sqrt{3}+12\sqrt{3}-12\sqrt{3}=2\sqrt{3}\)
b: \(=\left|2-\sqrt{5}\right|-\sqrt{\left(3+\sqrt{5}\right)^2}\)
\(=\sqrt{5}-2-3-\sqrt{5}\)
=-5
\(B=\sin^6\alpha+\cos^6\alpha+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha\right)^3+\left(\cos^2\alpha\right)^3+3\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)\left(\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha\right)+3\sin^2\alpha.\cos^2\alpha\)
\(B=\sin^4\alpha+\cos^4\alpha-\sin^2\alpha.\cos^2\alpha+3\sin^2\alpha.\cos^2\alpha\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
\(B=\left(\sin^2\alpha\right)^2+\left(\cos^2\alpha\right)^2+2.\sin^2\alpha.\cos^2\alpha\)
\(B=\left(\sin^2\alpha+\cos^2\alpha\right)^2=1\)(vì \(\sin^2\alpha+\cos^2\alpha=1\))
Vậy B = 1
\(6\sqrt{6}-27=\left(\sqrt{6}-3\right)\left(9+3\sqrt{6}\right)\)
\(\sqrt{\left(6-\sqrt{27}\right)^2}-\sqrt{27}=\sqrt{\left(3.\left(2-\sqrt{3}\right)\right)^2=3\sqrt{\left(2-\sqrt{3}\right)^2}}-3\sqrt{3}=3\left(2-\sqrt{3}\right)-3\sqrt{3}=6-3\sqrt{3}-3\sqrt{3}=6-6\sqrt{3}\)