Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Khi x=9 thì \(B=\dfrac{\sqrt{9}+1}{\sqrt{9}+2}\)
\(=\dfrac{3+1}{3+2}=\dfrac{4}{5}\)
b: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6+\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+6}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+x+2\sqrt{x}-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)
c: P=A/B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
\(P-2=\dfrac{2\sqrt{x}}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{-2}{\sqrt{x}+1}< 0\)
=>P<2
a: Khi x=16 thì \(A=\dfrac{2\cdot\sqrt{16}}{\sqrt{16}+3}=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)
b: P=A+B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{7\sqrt{x}+3}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3+7\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+5\sqrt{x}+6}{x-9}\)
\(\dfrac{2\sqrt{a}}{\sqrt{a}+3}+\dfrac{\sqrt{a}+1}{\sqrt{a}-3}+\dfrac{3+7\sqrt{a}}{9-a}\)
\(=\dfrac{2\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}+\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}-\dfrac{3+7\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{2a-6\sqrt{a}+a+4\sqrt{a}+3-3-7\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{3a-9\sqrt{a}}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}=\dfrac{3\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+3\right)}\)
\(=\dfrac{3\sqrt{a}}{\sqrt{a}+3}\)
1) Ta có: \(\dfrac{a-6\sqrt{a}+9}{5\sqrt{a}-15}\)
\(=\dfrac{\left(\sqrt{a}-3\right)^2}{5\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}-3}{5}\)
2) Ta có: \(5x-\sqrt{x^2-10x+25}\)
\(=5x-\left|x-5\right|\)
\(=5x-5+x\)
=6x-5
3) Ta có: \(\dfrac{\sqrt{x^2-2x+1}}{x-1}\)
\(=\dfrac{\left|x-1\right|}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{\pm1}{x+1}\)
4) Ta có: \(3\sqrt{5}-\sqrt{46-6\sqrt{5}}\)
\(=3\sqrt{5}-3\sqrt{5}+1\)
=1