\(\frac{\sqrt{x-1}}{3+\sqrt{x-1}}\)+\(\frac{x+8}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2017

a. ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)

b. \(Q=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}-\frac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-3+11\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

c. Để \(Q< 1\Rightarrow Q-1< 0\Leftrightarrow\frac{3\sqrt{x}-\sqrt{x}+3}{\sqrt{x}-3}< 0\Leftrightarrow\frac{2\sqrt{x}+3}{\sqrt{x}-3}< 0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow0\le x< 9\)

Vậy \(0\le x< 9\)thì \(Q< 1\)

24 tháng 9 2018

\(A=\left(\frac{1}{1+\sqrt{x}}+\frac{2}{x-1}\right):\left(\frac{1}{x-\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-1}\right)\)   Đkxđ : x > 1 

\(A=\left(\frac{\sqrt{x}-1}{x-1}+\frac{2}{x-1}\right):\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)

\(A=\frac{\sqrt{x}-1+2}{x-1}.\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{1-x}\)

\(A=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(x-1\right)\left(1-x\right)}\)

\(A=\frac{\sqrt{x}\left(x-1\right)}{\left(x-1\right)\left(1-x\right)}=\frac{\sqrt{x}}{1-x}\)