Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{99}+\sqrt{100}}\)
=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)
=10-1=9
\(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}
\)
r thay n là lm đk

\(P=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{a-4}+\frac{3+2\sqrt{a}}{2-\sqrt{a}}-\frac{2-3\sqrt{a}}{\sqrt{a+2}}\)
\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}-\frac{3+2\sqrt{a}}{\sqrt{a}-2}-\frac{2-3\sqrt{a}}{\sqrt{a}+2}\)
\(=\frac{\sqrt{a}\left(16-\sqrt{a}\right)-\left(3+2\sqrt{a}\right)\left(\sqrt{a}+2\right)-\left(2-3\sqrt{a}\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{16\sqrt{a}-a-3\sqrt{a}-6-2a-4\sqrt{a}-2\sqrt{a}+4+3a-6\sqrt{a}}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{\sqrt{a}-2}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
\(=\frac{1}{\sqrt{a}+2}\)
b,Với ĐKXĐ,ta có: \(P=\frac{1}{\sqrt{a}-2}\)
Để P = 1/2
thì: \(\frac{1}{\sqrt{a}-2}=\frac{1}{2}\)
\(\Leftrightarrow\sqrt{a}-2=2\)
\(\Leftrightarrow\sqrt{a}=4\)
\(\Leftrightarrow a=16\left(tm\right)\)

giải giúp mình bài này ới ạ mình đng cần gấp
Cho biểu thức
c=(căng x-2/căng x+2+căng x+2/căng x-2)nhân căng x+2/2 - 4 căng x/căng x-2
a)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{a-9}\)
\(P=\frac{\sqrt{a}}{\sqrt{a}+3}+\frac{2\sqrt{a}}{\sqrt{a}-3}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}-\frac{3a+9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{a-3\sqrt{a}+3+3\sqrt{a}-3a-9}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}\)
\(P=\frac{-2a-3}{a-9}\)
b) Để \(P=\frac{1}{3}\Rightarrow\frac{-2a-3}{a-9}=\frac{1}{3}\)
\(\Rightarrow3\left(-2a-3\right)=a-9\)
\(\Rightarrow-6a-9=a-9\)
\(\Rightarrow-6a-a=-9+9\)
\(\Rightarrow-7a=0\left(L\right)\)
Vậy ko có gt của a để P=1/3 ( mk ko chắc.....)
Q = \(\frac{\sqrt{a}+3}{\sqrt{a}-2}\)- \(\frac{\sqrt{a}-1}{\sqrt{a}+2}\)+ \(\frac{4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}+2\right)-\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)+4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
=\(\frac{a+5\sqrt{a}+6-a+3\sqrt{a}-2+4-4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{8+4\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
= \(\frac{4\left(\sqrt{a}+2\right)}{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}\)
= \(\frac{4}{\sqrt{a}-2}\)
\(Q=\frac{\sqrt{a+3}}{\sqrt{a-2}}-\frac{\sqrt{a-1}}{\sqrt{a+2}}+\frac{4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{\left(\sqrt{a+3}\right)\left(\sqrt{a+2}\right)-\left(\sqrt{a-1}\right)\left(\sqrt{a-2}\right)+4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{a+5\sqrt{a}+6-a+3\sqrt{a-2}+4-4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{8+4\sqrt{a}}{\left(\sqrt{a-2}\right)\left(\sqrt{a+2}\right)}\)
\(Q=\frac{4\left(\sqrt{a+2}\right)}{\left(\sqrt{a+2}\right)\left(\sqrt{a-2}\right)}\)
\(Q=\frac{4}{\sqrt{a-2}}\)