K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Lời giải:
\(P=\sqrt{14+\sqrt{40}+\sqrt{56}+\sqrt{140}}=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)

\(=\sqrt{(7+2\sqrt{7.5}+5)+2(\sqrt{10}+\sqrt{14})+2}\)

\(=\sqrt{(\sqrt{7}+\sqrt{5})^2+2\sqrt{2}(\sqrt{5}+\sqrt{7})+(\sqrt{2})^2}\)

\(=\sqrt{(\sqrt{5}+\sqrt{7}+\sqrt{2})^2}=\sqrt{5}+\sqrt{7}+\sqrt{2}\)

25 tháng 6 2019

\(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)

\(A^2=\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)^2\)

\(A^2=2-\sqrt{3}+2+\sqrt{3}+2\sqrt{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(A^2=4+2\sqrt{4-3}\)

\(A^2=6\)

\(A>0\)\(\Rightarrow A=\sqrt{6}\)

25 tháng 6 2019

\(A=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\\ A=\frac{\sqrt{2}\left(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\right)}{\sqrt{2}}\\ A=\frac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\\ A=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}\\ A=\frac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}\\ A=\frac{2\sqrt{3}}{\sqrt{2}}\\ A=\sqrt{6}\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

Lời giải:
\(Q=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})+\sqrt{2}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{(1+\sqrt{2})(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

20 tháng 7 2016

Ta có \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}\left(\sqrt{10}-\sqrt{2}\right)\)

\(2\sqrt{4+\sqrt{\sqrt{5}^2-2\sqrt{5}.1+1}}\sqrt{2}\left(\sqrt{5}-1\right)\)

\(2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}\sqrt{2}\left(\sqrt{5}-1\right)\)

\(\sqrt{2}\sqrt{4+\sqrt{5}-1}.\left(\sqrt{5}-1\right)2\)

\(\sqrt{2\left(3+\sqrt{5}\right)}\left(\sqrt{5}-1\right)2\)

\(\sqrt{6+2\sqrt{5}}\left(\sqrt{5}-1\right)2\)

\(\sqrt{\left(\sqrt{5}+1\right)^2}\left(\sqrt{5}-1\right)2\)

\(\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)2\)

\(\left(\sqrt{5}^2-1\right)2\)

= 4.2

= 8

Chúc bạn làm bài tốt :)

AH
Akai Haruma
Giáo viên
7 tháng 7 2019

Lời giải:
\(N=\sqrt{4\sqrt{6}+8\sqrt{3}+4\sqrt{2}+18}\)

\(=\sqrt{2\sqrt{24}+4(2\sqrt{3}+\sqrt{2})+18}\)

\(=\sqrt{12+2\sqrt{24}+2+4(\sqrt{12}+\sqrt{2})+4}\)

\(=\sqrt{(\sqrt{12}+\sqrt{2})^2+4(\sqrt{12}+\sqrt{2})+4}\)

\(=\sqrt{(\sqrt{12}+\sqrt{2}+2)^2}=\sqrt{12}+\sqrt{2}+2=2\sqrt{3}+\sqrt{2}+2\)

15 tháng 11 2016

\(\frac{7\sqrt{b}}{b-9}-\left(\frac{\sqrt{b}}{\sqrt{b}-3}-\frac{\sqrt{b}-1}{\sqrt{b}+3}\right)\)

\(=\frac{7\sqrt{b}}{b-9}-\frac{\sqrt{b}\times\left(\sqrt{b}+3\right)}{\left(\sqrt{b}-3\right)\left(\sqrt{b}+3\right)}+\frac{\left(\sqrt{b}-1\right)\left(\sqrt{b}-3\right)}{\left(\sqrt{b}+3\right)\left(\sqrt{b}-3\right)}\)

\(=\frac{7\sqrt{b}}{b-9}-\frac{b+3\sqrt{b}}{b-9}+\frac{b-3\sqrt{b}-\sqrt{b}+3}{b-9}\)

\(=\frac{7\sqrt{b}-b-3\sqrt{b}+b-3\sqrt{b}-\sqrt{b}+3}{b-9}\)

\(=\frac{3}{b-9}\)

\(=\dfrac{x-10\sqrt{x}+25-10\sqrt{x}}{x-25}=\dfrac{x-20\sqrt{x}+25}{x-25}\)

 

Sửa đề; \(D=\left(\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}-\dfrac{2\sqrt{xy}}{x-y}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(D=\dfrac{x+2\sqrt{xy}+y-4\sqrt{xy}}{2\left(x-y\right)}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{\sqrt{x}}{x-y}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)