Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x^2-3x}-\frac{x}{x^2-9}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x+3}{x\left(x-3\right)}-\frac{x}{\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2}{x\left(x-3\right)\left(x+3\right)}-\frac{x^2}{\left(x-3\right)\left(x+3\right)x}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{\left(x+3\right)^2-x^2}{x\left(x-3\right)\left(x+3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{x^2+6x+9-x^2}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{x^2+3x}{2x+3}\left(\frac{3\left(2x+3\right)}{x\left(x^2-3\right)}\right)\)
\(=\frac{x}{x-3}-\frac{3x^2+9x}{x\left(x^2-3\right)}\)(mk sợ mk làm sai lắm nếu làm sai thì sory nhá)
\(\frac{25x-655}{95}-\frac{5\left(x-12\right)}{209}=\frac{89-3x-\frac{2\left(x-18\right)}{5}}{11}\)
\(< =>\frac{5x-131}{19}=\frac{1631-52x-\frac{38x-684}{5}}{209}\)
\(< =>\left(5x-131\right)209=\left(1631-52x-\frac{38x-684}{5}\right)19\)
\(< =>55x-1441=1631-52x-\frac{38x-684}{5}\)
\(< =>3072-107x=\frac{38x-684}{5}\)
\(< =>\left(3072-107x\right)5=38x-684\)
\(< =>15360-535x-38x-684=0\)
\(< =>14676=573x< =>x=\frac{14676}{573}=\frac{4892}{191}\)
nghệm xấu thế
\(\frac{8\left(x+22\right)}{45}-\frac{7x+149+\frac{6\left(x+12\right)}{5}}{9}=\frac{x+35+\frac{2\left(x+50\right)}{9}}{5}\)
\(< =>\frac{8x+176}{45}-\frac{41x+817}{45}=\frac{11x+415}{45}\)
\(< =>993-33x-11x-415=0\)
\(< =>578=44x< =>x=\frac{289}{22}\)
a) \(\frac{1-x}{x+1}+3=\frac{2x+3}{x+1}\)
<=> 1 - x + 3(x + 1) = 2x + 3
<=> 1 - x + 3x + 3 = 2x + 3
<=> 1 - x + 3x + 3 - 2x = 3
<=> 4 = 3 (vô lý)
=> pt vô nghiệm
b) ĐKXĐ: \(x\ne1;x\ne2\)
\(\frac{1}{x+1}-\frac{5}{x-2}=\frac{15}{\left(x+1\right)\left(2-x\right)}\)
<=> (x - 2)(2 - x) - 5(x + 1)(2 - x) = 15(x - 2)
<=> 2x - x2 - 4 + 2x - 5x - 5x2 + 10 = 15x - 30
<=> -x + 4x2 - 14 = 15x - 30
<=> x - 4x2 + 14 = 15x - 30
<=> x - 4x2 + 14 + 15x - 30 = 0
<=> 16x - 4x2 - 16 = 0
<=> 4(4x - x2 - 4) = 0
<=> -x2 + 4x - 4 = 0
<=> x2 - 4x + 4 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2 (ktm)
=> pt vô nghiệm
c) xem bài 4 ở đây: Câu hỏi của gjfkm
d) ĐKXĐ: \(x\ne1;x\ne2;x\ne3\)
\(\frac{x+4}{x^2-3x+2}+\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
<=> \(\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
<=> (x + 4)(x - 3) + (x + 1)(x - 2) = (2x + 5)(x - 2)
<=> x2 - 3x + 4x - 12 + x2 - 2x + x - 2 = 2x2 - 4x + 5x - 10
<=> 2x2 - 14 = 2x2 + x - 10
<=> 2x2 - 14 - 2x2 = x - 10
<=> -14 = x - 10
<=> -14 + 10 = x
<=> -4 = x
<=> x = -4
\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)
Vậy pt có vô số nghiệm
\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)
Mấy câu rút gọn bạn quy đồng nha
a/ Do \(x=0\) không phải nghiệm, pt tương đương:
\(\frac{3}{x+\frac{3}{x}-1}-\frac{2}{x+\frac{3}{x}-3}=-1\)
Đặt \(x+\frac{3}{x}-3=a\) ta được:
\(\frac{3}{a+2}-\frac{2}{a}=-1\)
\(\Leftrightarrow3a-2\left(a+2\right)=-a\left(a+2\right)\)
\(\Leftrightarrow a^2+3a-4=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{x}-3=1\\x+\frac{3}{x}-3=-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-4x+3=0\\x^2+x+3=0\end{matrix}\right.\)
b/ Đặt \(x^2+2x+\frac{5}{2}=a>0\)
Phương trình trở thành:
\(\frac{1}{\left(a-\frac{1}{2}\right)^2}+\frac{1}{\left(a+\frac{1}{2}\right)^2}=\frac{5}{4}\)
\(\Leftrightarrow4\left(a+\frac{1}{2}\right)^2+4\left(a-\frac{1}{2}\right)^2=5\left(a^2-\frac{1}{4}\right)^2\)
\(\Leftrightarrow8a^2+2=5\left(a^4-\frac{1}{2}a^2+\frac{1}{16}\right)\)
\(\Leftrightarrow5a^4-\frac{21}{2}a^2-\frac{27}{16}=0\Rightarrow\left[{}\begin{matrix}a^2=\frac{9}{4}\\a^2=-\frac{3}{20}\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2+2x+\frac{5}{2}=\frac{3}{2}\\x^2+2x+\frac{5}{2}=-\frac{3}{2}\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ne\pm1\)
\(\Leftrightarrow\left(\frac{x}{x+1}\right)^2+\left(\frac{x}{x-1}\right)^2+\frac{2x^2}{x^2-1}-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{x}{x+1}+\frac{x}{x-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
\(\Leftrightarrow\left(\frac{2x^2}{x^2-1}\right)^2-\frac{2x^2}{x^2-1}-\frac{10}{9}=0\)
Đặt \(\frac{2x^2}{x^2-1}=a\)
\(\Rightarrow a^2-a-\frac{10}{9}=0\) \(\Rightarrow\left[{}\begin{matrix}a=\frac{5}{3}\\a=-\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{2x^2}{x^2-1}=\frac{5}{3}\\\frac{2x^2}{x^2-1}=-\frac{2}{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=-5\left(l\right)\\x^2=\frac{1}{4}\end{matrix}\right.\) \(\Rightarrow x=\pm\frac{1}{2}\)
d/ĐKXĐ: ...
\(\Leftrightarrow\left(x^2+\frac{36}{x^2}\right)-13\left(x-\frac{6}{x}\right)=0\)
Đặt \(x-\frac{6}{x}=a\Rightarrow x+\frac{36}{x^2}=a^2+12\)
\(\Rightarrow a^2-13a+12=0\Rightarrow\left[{}\begin{matrix}a=1\\a=12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{6}{x}=1\\x-\frac{6}{x}=12\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2-x-6=0\\x^2-12x-6=0\end{matrix}\right.\)