\(\frac{3}{2x+6}\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2019

nhân cả tử và mẫu của phân số thứ nhất với x là ra thôi bn

4 tháng 1 2019

\(Q=\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)

\(Q=\frac{3x}{2x^2+6x}-\frac{x-6}{2x^2+6x}\)

\(Q=\frac{3x-x+6}{2x^2+6x}=\frac{2x+6}{2x^2+6x}=\frac{1}{x}\)

Chúc bạn học tốt!!!

29 tháng 11 2019

Làm ngắn gọn thôi nhé :v

\(A=\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(A=\frac{x^5-3x^4-3x^3+11x^2-6x}{x^5-8x^2+22x^2-24x+9}\)

\(A=\frac{x^4-3x^3-3x^2+11x-6}{x^4-8x^3+22x^2-24x+9}\)

\(A=\frac{\left(x-1\right)\left(x-1\right)\left(x+2\right)\left(x-3\right)}{\left(x-1\right)\left(x-1\right)\left(x-3\right)\left(x-3\right)}\)

\(A=\frac{x+2}{x-3}\)

\(B=\frac{x}{x+2}+\frac{2}{x-2}-\frac{4x}{4-x^2}\)

\(B=\frac{-x^4-4x^3+16x+16}{-x^4+8x^2-16}\)

\(B=\frac{\left(-x-2\right)\left(x+2\right)\left(x+2\right)\left(x-2\right)}{\left(-x-2\right)\left(x-2\right)\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{x+2}{x-2}\)

\(C=\frac{1+x}{3-x}-\frac{1-2x}{3+x}-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{1+x}{3-x}-\left(\frac{1-2x}{3+x}\right)-\frac{x\left(1-x\right)}{9-x^2}\)

\(C=\frac{10x}{-x^2+9}\)

\(D=\frac{5}{2x^2+6x}-\frac{4-3x^2}{x^2-9}-3\)

\(D=\frac{5}{2x^2+6x}-\left(\frac{4-3x^2}{x^2-9}\right)-3\)

\(D=\frac{51x^2+138x-45}{2x^4+6x^2-18x^2-54x}\)

\(D=\frac{3\left(17x-5\right)\left(x+3\right)}{2x\left(x+3\right)\left(x+3\right)\left(x-2\right)}\)

\(D=\frac{51x-15}{2x^3-18x}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\frac{3x-2}{x^2+2x+1}\)

\(E=\frac{3x+2}{x^2-2x+1}-\frac{6}{x^2-1}-\left(\frac{3x-2}{x^2+2x+1}\right)\)

\(E=\frac{10x^4-10}{x^6-3x^4+3x^2-1}\)

\(E=\frac{10\left(x^2+1\right)\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x+1\right)\left(x+1\right)\left(x-1\right)\left(x-1\right)\left(x-1\right)}\)

\(E=\frac{10x^2+10}{x^4-2x+1}\)

2 tháng 12 2019

a) \(\frac{x^2-16}{4x-x^2}=\frac{\left(x+4\right)\left(x-4\right)}{x\left(4-x\right)}\)

\(=\frac{\left(x+4\right)\left(x-4\right)}{-x\left(x-4\right)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+3x+x+3}{2\left(x+3\right)}\)

\(=\frac{x\left(x+3\right)+\left(x+3\right)}{2\left(x+3\right)}\)

\(=\frac{\left(x+1\right)\left(x+3\right)}{2\left(x+3\right)}=\frac{x+1}{2}\)

c) \(\frac{\left(2x^2+2x\right)\left(x-2\right)^2}{\left(x^3-4x\right)\left(x+1\right)}\)

\(=\frac{2x\left(x+1\right)\left(x-2\right)^2}{x\left(x^2-4\right)\left(x+1\right)}\)

\(=\frac{2x\left(x-2\right)^2}{x\left(x+2\right)\left(x-2\right)}\)

\(=\frac{2x\left(x-2\right)}{x\left(x+2\right)}\)

\(=\frac{2x^2-4x}{x^2+2x}\)

d) \(\frac{x^3-x^2y+xy^2}{x^3+y^3}\)

\(=\frac{x\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)}=\frac{x}{x+y}\)

13 tháng 3 2020

bạn ơi bạn kiểm tra lại đề thêm lần nữa xem có sai ko ?

13 tháng 3 2020

câu a mình rút gọn ra:

\(A=\frac{5-3x}{\left(2x-3\right)\left(x-1\right)}.\frac{x}{5+3x}\)

tới đây hết rút được rồi

29 tháng 11 2019

Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)

\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)

\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)

\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)

29 tháng 11 2019

Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)

\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)

\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)

\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)

11 tháng 12 2018

a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)

11 tháng 12 2018

Bạn có thể giúp mình 2 câu còn lại dc kh ạ 

30 tháng 11 2019

1) ĐKXĐ: x \(\ne\)1; x \(\ne\)0

Ta có: A = \(\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{\left(2x-1\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6x}{x\left(x-1\right)}\)

A = \(\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-2x-x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{4x^2-3x+17+2x^2-3x+1-6x^2-6x-6}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12x+12}{\left(x-1\right)\left(x^2+x+1\right)}\)

A = \(\frac{-12\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=-\frac{12}{x^2+x+1}\)

b) Ta có: B = \(\frac{x+9y}{x^2-9y^2}-\frac{3y}{x^2+3xy}\)

B = \(\frac{x+9y}{\left(x-3y\right)\left(x+3y\right)}-\frac{3y}{x\left(x+3y\right)}\)

B = \(\frac{x\left(x+9y\right)}{x\left(x-3y\right)\left(x+3y\right)}-\frac{3y\left(x-3y\right)}{x\left(x+3y\right)\left(x-3y\right)}\)

B = \(\frac{x^2+9xy-3xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B =  \(\frac{x^2+6xy+9y^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{\left(x+3y\right)^2}{x\left(x-3y\right)\left(x+3y\right)}\)

B = \(\frac{x+3y}{x\left(x-3y\right)}\)

30 tháng 11 2019

\(A=\frac{4x^2-3x+17}{x^3-1}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x-x^2}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}+\frac{6x}{x\left(1-x\right)}\)

\(A=\frac{4x^2-3x+17}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x-1}{x^2+x+1}-\frac{6x}{x\left(x-1\right)}\)

\(A=\frac{x\left(4x^2-3x+17\right)+x\left(x-1\right)\left(2x-1\right)-6x\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{4x^3-3x^2+17x+x\left(2x^2-x-2x+1\right)-6x^3-6x^2-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{\left(4x^3+2x^3-6x^3\right)-3x^2-3x^3-6x^2+17x+x-6x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x^2+12x}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(A=\frac{-12x\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\frac{-12}{x^2+x+1}\)

24 tháng 11 2021

\(\frac{2x}{x^2-3x}+\frac{2x}{x^2-4x+3}+\frac{x}{x-1}\)

\(=\frac{2x}{x\left(x-3\right)}+\frac{2x}{x^2-3x-x+3}+\frac{x}{x-1}\)

\(=\frac{2}{x-3}+\frac{2x}{x\left(x-3\right)-\left(x-3\right)}+\frac{x}{x-1}\)

\(=\frac{2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}+\frac{2x}{\left(x-3\right)\left(x-1\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x-1\right)}\)

\(=\frac{2x-2+2x+x^2-3x}{\left(x-3\right)\left(x-1\right)}\)

\(=\frac{x^2+x-2}{\left(x-3\right)\left(x-1\right)}=\frac{x^2-x+2x-2}{\left(x-3\right)\left(x-1\right)}=\frac{x\left(x-1\right)+2\left(x-1\right)}{\left(x-3\right)\left(x-1\right)}=\frac{\left(x-1\right)\left(x+2\right)}{\left(x-3\right)\left(x-1\right)}=\frac{x+2}{x-3}\)

10 tháng 3 2020

\(B=\left(\frac{2x+1}{2x-1}+\frac{4}{1-4x^2}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\left(x\ne\pm\frac{1}{2}\right)\)

\(\Leftrightarrow B=\left(\frac{2x+1}{2x-1}-\frac{4}{4x^2-1}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)

\(\Leftrightarrow B=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{4}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right)\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{\left(2x\right)^2+2\cdot1\cdot2x+1-4-\left[\left(2x\right)^2-2\cdot2x\cdot1+1^2\right]}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{4x^2+4x-3-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)

\(\Leftrightarrow B=\frac{\left(8x-4\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4}{x^2+2}\)

b) \(B=\frac{4}{x^2+2}\left(x\ne\pm\frac{1}{2}\right)\)

Với x=-1 (TMĐK) thay vào B ta có:

\(B=\frac{4}{\left(-1\right)^2+2}=\frac{4}{1+2}=\frac{4}{3}\)

Vậy \(B=\frac{4}{3}\)khi x=-1