\(M=\frac{\left(b-c\right)^3+\left(c-a\right)^3+\left(a-b\right)^3}{a^2\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x+2\right)\left(x-2\right)-\left(x+2\right)^2\)

\(=\left(x+2\right)\left(x-2-x-2\right)\)

\(=\left(-4\right)\left(x+2\right)\)

28 tháng 7 2015

bn viết lại đề đi 

6 tháng 8 2017

a) \(\left(a+b\right)^3-\left(a-b\right)^3-6a^2b\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6a^2b\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-6a^2b\)

\(\Leftrightarrow2b^3\)

b) \(\left(a+b\right)^3-\left(a-b\right)^3-6ab^2\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)-6ab^2\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-6ab^2\)

\(\Leftrightarrow2b^3+6a^2b-6ab^2\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

Lời giải:

\(M=\frac{ab}{(c-a)(c-b)}+\frac{ac}{(b-a)(b-c)}+\frac{bc}{(a-b)(a-c)}\\ =\frac{-ab(a-b)}{(a-b)(b-c)(c-a)}+\frac{-ac(c-a)}{(a-b)(b-c)(c-a)}+\frac{-bc(b-c)}{(a-b)(b-c)(c-a)}\\ =\frac{-[ab(a-b)+ac(c-a)+bc(b-c)]}{(a-b)(b-c)(c-a)}\\ =\frac{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}{(ab^2+bc^2+ca^2)-(a^2b+b^2c+c^2a)}=1\)