Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
từ vế trái ta có
\(\frac{x.x\left(x+3\right)}{x.\left(x+3\right)\left(x+3\right)}\)
Rút gọn đi x và (x+3) còn
\(\frac{x}{x+3}\)
từ đó suy ra cái bên trên đó .
Xét VT, ta có: \(\frac{x^2\left(x+3\right)}{x\left(x+3\right)^2}=\frac{x}{x+3}\)= VP
Vậy ...
c) hang dang thuc ( x -y+z)^2
o duoi phan h hang dang thuc luon
a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)
mau la (x-1)(2x^2 -x-3)
b ) k nhin dc de
AD phân tích đa thức thành nhân tử ở tử thức và mẫu thức của từng phân thức
\(\frac{x^8-1}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{\left(x^2-1\right)\left(x^4+x^2+1\right)}{\left(x^4+1\right)\left(x^2-1\right)}\)
\(=\frac{x^4+x^2+1}{x^4+1}\)
\(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\)
\(=\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)
\(=\frac{\left(x+y-2\right)\left(x+y+2\right)}{\left(x+2-y\right)\left(x+2+y\right)}\)
\(=\frac{x+y-2}{x+2-y}\)
\(\frac{4x^2+12x+9}{2x^2-x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x^2-4x+3x-6}\)
\(=\frac{\left(2x+3\right)^2}{2x\left(x-2\right)+3\left(x-2\right)}\)
\(=\frac{\left(2x+3\right)^2}{\left(2x+3\right)\left(x-2\right)}\)
\(=\frac{2x+3}{x-2}\)
\(\frac{25-10x+x^2}{xy-5y}\)
\(=\frac{\left(5-x\right)^2}{-y\left(5-x\right)}\)
\(=-\frac{5-x}{y}\)
\(\frac{\left|x\right|-3}{x^2-9}\)
\(=\frac{x-3}{\left(x+3\right)\left(x-3\right)}\)
\(=\frac{1}{x+3}\)
\(\frac{3\left|x-4\right|}{3x^2-3x-36}\)
\(=\frac{3\left(x-4\right)}{3\left(x^2-x-12\right)}\)
\(=\frac{x-4}{x^2-4x+3x-12}\)
\(=\frac{x-4}{x\left(x-4\right)+3\left(x-4\right)}\)
\(=\frac{x-4}{\left(x-4\right)\left(x+3\right)}\)
\(=\frac{1}{x+3}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
a)= \(\frac{\left(2x+3\right)^2}{2x^2+3x-4x-6}\)
=\(\frac{\left(2x+3\right)^2}{x\left(2x+3\right)-2\left(2x+3\right)}\)
= \(\frac{\left(2x+3\right)^2}{\left(x-2\right)\left(2x+3\right)}\)
=\(\frac{2x+3}{x-2}\)
b) = \(\frac{3\left|x-4\right|}{3x^2-3x-1296}\)
= \(\frac{3\left|x-4\right|}{3\left(x^2-x-432\right)}\)
=\(\frac{\left|x-4\right|}{x^2-x-432}\)