K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

bài này dùng lược đồ Hooc-ne đoán nghiệm là ra 

16 tháng 6 2018

\(=\frac{x^4-x^2-3x^2+3}{x^4-x^2+7x^2-7}=\frac{x^2\left(x^2-1\right)-3\left(x^2-1\right)}{x^2\left(x^2-1\right)+7\left(x^2-1\right)}=\frac{\left(x^2-3\right)\left(x^2-1\right)}{\left(x^2+7\right)\left(x^2-1\right)}=\frac{x^2-3}{x^2+7}\)

16 tháng 6 2018

HELP ME

\(A\left(x\right)=\dfrac{4x^4+81}{2x^2-6x+9}\)

\(=\dfrac{4x^4+36x^2+81-36x^2}{2x^2-6x+9}\)

\(=\dfrac{\left(2x^2+9\right)^2-\left(6x\right)^2}{2x^2+9-6x}\)

\(=\dfrac{\left(2x^2+9+6x\right)\left(2x^2+9-6x\right)}{2x^2+9-6x}\)

\(=2x^2+6x+9\)

=>\(M\left(x\right)=2x^2+6x+9\)

\(=2\left(x^2+3x+\dfrac{9}{2}\right)\)

\(=2\left(x^2+3x+\dfrac{9}{4}+\dfrac{9}{4}\right)\)

\(=2\left(x+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall x\)

Dấu '=' xảy ra khi \(x+\dfrac{3}{2}=0\)

=>\(x=-\dfrac{3}{2}\)

15 tháng 1 2024

>=9/2 là sao vậy

a: \(=\dfrac{4x\left(3x+1\right)}{\left(3x+1\right)\left(3x-1\right)}=\dfrac{4x}{3x-1}\)

b: \(=\dfrac{2\left(4x^2-4x+1\right)}{4x-30+2x}=\dfrac{4\left(2x-1\right)^2}{6x-30}=\dfrac{2\left(2x-1\right)^2}{3\left(x-5\right)}\)

d: \(=\dfrac{x\left(x-6\right)}{2\left(x-6\right)\left(x+6\right)}=\dfrac{x}{2x+12}\)

20 tháng 11 2016

D . x2 + 4x + 4 = ( x + 2 )2

20 tháng 11 2016

Câu D tui ghi sai rồi xin lỗi nha

D)x2+5x+6\x2+4x+4

11 tháng 12 2020

Bài 1 : 

\(\left(x-2\right)^2-\left(x-3^2\right)=\left(x-2\right)^2-\left(x-9\right)\)

\(=x^2-4x+4-x+9=x^2-5x+13\)

Bài 2 : 

a, \(P=\frac{1-4x^2}{4x^2-4x+1}=\frac{\left(1-2x\right)\left(2x+1\right)}{\left(2x-1\right)^2}\)

\(=\frac{-\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)^2}=\frac{-\left(2x+1\right)}{2x-1}=\frac{-2x-1}{2x-1}\)

b, Thay x = -4 ta được : 

\(\frac{-2.\left(-4\right)-1}{2.\left(-4\right)-1}=\frac{8-1}{-8-1}=-\frac{7}{9}\)

26 tháng 2 2022

(-3).8/8.6 rút gọn

b: \(=\dfrac{4x\left(x-1\right)\left(x+1\right)}{6x\left(x-1\right)}=\dfrac{2\left(x+1\right)}{3}\)

c: \(=\dfrac{\left(5-x-1\right)\left(5+x+1\right)}{\left(x+6\right)^2}=\dfrac{\left(4-x\right)\left(x+6\right)}{\left(x+6\right)^2}=\dfrac{4-x}{x+6}\)

d: \(=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\dfrac{x+3}{x+2}\)