Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)
\(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)
\(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)
\(=\frac{x+y-z}{x-y+z}\)
Ta thay : \(x=0;y=2009;z=2010\) ta được :
\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)
Chúc bạn học tốt !!!
\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)
\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)
Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :
\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)
a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3
b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81
c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3
d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2
e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2
= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )
= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6
= -3x2 + 39x + 6
= -3( x2 - 13x - 2 )
f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3
= x3 + y3 + x3 - y3 - 2x3
= 0
g) x2 + 2x( y + 1 ) + y2 + 2y + 1
= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )
= x2 + 2x( y + 1 ) + ( y + 1 )2
= ( x + y + 1 )2
= [ ( x + y ) + 1 ]2
= ( x + y )2 + 2( x + y ) + 1
= x2 + 2xy + y2 + 2x + 2y + 1
s) = ( x2 - 2xy + y2 ) - ( 2xy )2 = ( x - y - 2xy )( x - y + 2xy )
u) sửa +4y thành -4y
= 4( x - y ) - x2( x - y ) = ( x - y )( 2 - x )( 2 + x )
\(\frac{15x\left(x+y\right)^3}{5y\left(x+y\right)^2}\)
ĐKXĐ : \(x+y\ne0\Leftrightarrow x\ne-y\)
\(=\frac{5\cdot3x\cdot\left(x+y\right)^2\left(x+y\right)}{5\cdot y\cdot\left(x+y\right)^2}\)
\(=\frac{3x\left(x+y\right)}{y}\)
6, x mũ 2 - 1 + 2xy + y mũ 2 = (y+x-1) (y+x+1)
k cho mình đi mà mình chắc chắn đúng
Bạn viết rõ hơn nhé :
\(\frac{x^4-xy^3}{2xy+y^2}:\frac{x^3+x^2y+xy^2}{2x+y}\)
= \(\frac{x^4-xy^3}{2xy+y^2}.\frac{2x+y}{x^3+x^2y+xy^2}\)
= \(\frac{x.\left(x-y\right).\left(x^2+xy+y^2\right).\left(2x+y\right)}{y.\left(2x+y\right).x.\left(x^2+xy+y^2\right)}\)
= \(\frac{x-y}{y}\)
Chúc bạn học tốt !!!
a)x²−2x−4y²−4ya)x²-2x-4y²-4y
=x²−2x−4y²−4y+2xy−2xy=x²-2x-4y²-4y+2xy-2xy
=(x²−2xy−2x)+(2xy−4y²−4y)=(x²-2xy-2x)+(2xy-4y²-4y)
=x(x−2y−2)+2y(x−2y−2)=x(x-2y-2)+2y(x-2y-2)
=(x+2y)(x−2y−2)=(x+2y)(x-2y-2)
b)x4+2x³−4x−4b)x4+2x³-4x-4
=x4+2x³+2x²−2x²−4x−4=x4+2x³+2x²-2x²-4x-4
=(x4+2x³+2x²)−(2x²+4x+4)=(x4+2x³+2x²)-(2x²+4x+4)
=x²(x²+2x+2)−2(x²+2x+2)=x²(x²+2x+2)-2(x²+2x+2)
=(x²−2)(x²+2x+2)=(x²-2)(x²+2x+2)
c)x³+2x²y−x−2yc)x³+2x²y-x-2y
=x²(x+2y)−(x+2y)=x²(x+2y)-(x+2y)
=(x²−1)(x+2y)=(x²-1)(x+2y)
=(x+1)(x−1)(x+2y)=(x+1)(x-1)(x+2y)
d)3x²−3y²−2(x−y)²d)3x²-3y²-2(x-y)²
=3(x²−y²)−2(x−y)²=3(x²-y²)-2(x-y)²
=3(x+y)(x−y)−2(x−y)²=3(x+y)(x-y)-2(x-y)²
=(x−y)[3(x+y)−2(x−y)]=(x-y)[3(x+y)-2(x-y)]
=(x−y)(3x+3y−2x+2y)=(x-y)(3x+3y-2x+2y)
=(x−y)(x+5y)=(x-y)(x+5y)
e)x³−4x²−9x+36e)x³-4x²-9x+36
=(x³−4x²)−(9x−36)=(x³-4x²)-(9x-36)
=x²(x−4)−9(x−4)=x²(x-4)-9(x-4)
=(x−4)(x²−9)=(x-4)(x²-9)
=(x−4)(x²−3²)=(x-4)(x²-3²)
=(x−4)(x+3)(x−3)=(x-4)(x+3)(x-3)
f)x²−y²−2x−2yf)x²-y²-2x-2y
=(x²−y²)−(2x+2y)=(x²-y²)-(2x+2y)
=(x+y)(x−y)−2(x+y)=(x+y)(x-y)-2(x+y)
=(x+y)(x−y−2)
hok tốt nhé
k đi
\(\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)( ĐKXĐ tự tìm nhé *)
\(=\frac{\left(x^3\right)^2+2x^3y^3+\left(y^3\right)^2}{x\left(x^6-y^6\right)}\)
\(=\frac{\left(x^3+y^3\right)^2}{x\left[\left(x^3\right)^2-\left(y^3\right)^2\right]}\)
\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}\)
\(=\frac{\left[\left(x+y\right)\left(x^2-xy+y^2\right)\right]^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)}\)
\(=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=\frac{x^3+y^3}{x\left(x^3-y^3\right)}=\frac{x^3+y^3}{x^4-xy^3}\)
\(=\dfrac{10x^2y^2}{2xy}=5xy\)