\(\frac{x^2+7x+12}{4x^2+12x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)

                                                \(=\frac{2x+5}{3x-1}\)

Còn bài b bạn tự làm nhé

24 tháng 11 2018

Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)

\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)

\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)

\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)

Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)

\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)

\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)

\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)

\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)

\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)

13 tháng 9 2016

\(\frac{x^2+5x+6}{x^2+7x+12}\)=\(\frac{x^2+2x+3x+6}{x^2+3x+4x+12}\)=\(\frac{x\left(x+2\right)+3\left(x+2\right)}{x\left(x+3\right)+4\left(x+3\right)}\)=\(\frac{\left(x+3\right)\left(x+2\right)}{\left(x+4\right)\left(x+3\right)}\)=\(\frac{x+2}{x+4}\)

29 tháng 9 2019

\(A=\frac{4x}{x^2-2x}+\frac{3}{2-x}+\frac{12x}{x^3-4x}\)

\(A=\frac{4x}{x\left(x-2\right)}-\frac{3}{x-2}+\frac{12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{4x\left(x+2\right)-3x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x\left(x+2\right)+12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x^2+2x+12x}{x\left(x-2\right)\left(x+2\right)}\)

\(A=\frac{x^2+14x}{x\left(x-2\right)\left(x+2\right)}\)

2 tháng 11 2017

a)\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x^3-2^3\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

31 tháng 12 2017

Xét tử thức ta có

2x3-7x2-12x+45

= 2x3+5x2-12x2-30x+18x+45

= x2(2x+5)-6x(2x+5)+9(2x+5)

= (2x+5)(x2-6x+9)

= (2x+5)(x-3)(1)

Xét mẫu thức ta có

3x3-19x2+33x-9

= 3x3-x2-18x2+6x+27x-9

= x2(3x-1)-6x(3x-1)+9(3x-1)

= (3x-1)(x2-6x+9)

= (3x-1)(x-3)2 (2)

Thay (1) và (2) vào A ta được\(A=\frac{\left(2x+5\right)\left(x-3\right)^2}{\left(3x-1\right)\left(x-3\right)^2}=\frac{2x+5}{3x-1}\)

8 tháng 8 2017

Không ai trả lời buồn quá .

\(\frac{3x^2-12x+12}{x^4-8x}\)

\(=\frac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)

\(=\frac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+2^2\right)}\)

\(=\frac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

12 tháng 9 2016

bài này dễ lắm, mk làm 1 câu là bn làm câu sau dc hà

bn thấy tử số có 2x chung, vạy tử là; 2x2 +2x = 2x(x+1) 

mẫu số là hằng đẳng thức (x+1)2 = x2 +2x+1

vậy ta có: tử/mẫu = 2x(x+1)/(x+1) = 2x/x+1

12 tháng 9 2016

ko biet

24 tháng 11 2019

\(a.=\frac{4x\left(x^2-2x+1\right)}{x^2-1x-5x+5}\)

\(=\frac{4x\left(x-1\right)^2}{x\left(x-1\right)-5\left(x-1\right)}\)

\(=\frac{4x\left(x-1\right)^2}{\left(x-5\right)\left(x-1\right)}\)

\(=\frac{4x\left(x-1\right)}{x-5}\)

24 tháng 11 2019

b) \(\frac{4x^3-64x}{x^2-7x+12}\)

\(=\frac{4x\left(x^2-16\right)}{x^2-3x-4x+12}\)

\(=\frac{4x\left(x+4\right)\left(x-4\right)}{x\left(x-3\right)-4\left(x-3\right)}\)

\(=\frac{4x\left(x+4\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}\)

\(=\frac{4x\left(x+4\right)}{x-3}=\frac{4x^2+16x}{x-3}\)

c) \(\frac{x^2-6x+8}{x^3-8}\)

\(=\frac{x^2-2x-4x+8}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{x\left(x-2\right)-4\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{\left(x-4\right)\left(x-2\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)

\(=\frac{x-4}{x^2+2x+4}\)