Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2015.2016+4032/2017.2018-2018.2=4066272/4066270=2033136/2033135
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).....\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{19}{20}\)
\(=\frac{1.2.3.....19}{2.3.4.....20}\)
\(=\frac{1}{20}\)
\(B=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{20}\right)\)
\(B=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{18}{19}.\frac{19}{20}\)
\(B=\frac{1}{20}\)
Hok tốt
\(-\frac{20+44}{56-12}=\frac{-64}{44}=\)\(\frac{-16}{11}\)
\(\frac{-120+70}{30+60}\)=\(\frac{-5}{9}\)
Ta có \(\frac{-16}{11}< \frac{-11}{11}=-1\)
\(\frac{-5}{9}>\frac{-9}{9}=-1\)
nên \(\frac{-5}{9}>-1>\frac{-16}{11}\)
Vậy \(\frac{-5}{9}>\frac{-16}{11}\)
tự kết luận nhé
\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}=\frac{1.\left(-5\right)}{1.3^2}=-\frac{5}{9}\)
Chúc bạn học tốt
Giari thích :
\(3^{12}:3^{10}=3^{12-10}=3^2=9\)
\(\left(-5\right)^{21}:\left(-5\right)^{20}=\left(-5\right)^{21-20}=\left(-5\right)^1=\left(-5\right)\)
\(\frac{3^{10}.\left(-5\right)^{21}}{\left(-5\right)^{20}.3^{12}}\)
\(=\frac{\left(-5\right)}{3^2}\)
\(=\frac{-5}{9}\)
OK
\(10A=\frac{10\left(10^{29}+10^{10}\right)}{10^{30}+10^{10}}=\frac{10^{30}+10^{11}}{10^{30}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}\)
\(10B=\frac{10\left(10^{30}+10^{10}\right)}{10^{31}+10^{10}}=\frac{10^{31}+10^{11}}{10^{31}+10^{10}}=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(10^{30}+10^{10}< 10^{31}+10^{10}\Rightarrow\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow10A=1+\frac{10^{11}-10^{10}}{10^{30}+10^{10}}>10B=1+\frac{10^{11}-10^{10}}{10^{31}+10^{10}}\)
\(\Rightarrow A>B\)
Ta có :
\(\frac{2727}{4242}=\frac{2727:303}{4242:303}=\frac{9}{14}\)
Vậy rút gọ được : 9/14
k mik nha bn
thank you very much
\(\frac{2727}{4242}\) = \(\frac{2727:303}{4242:303}\) = \(\frac{9}{14}\)