Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đây này má Ran mori
a) \(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)
\(=5+\dfrac{1}{7}-3-\dfrac{3}{11}-2-\dfrac{1}{7}-1-\dfrac{8}{11}\)
\(=\left(5-3-2-1\right)+\left(\dfrac{1}{7}-\dfrac{3}{11}-\dfrac{1}{7}-\dfrac{8}{11}\right)\)
\(=-1+\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-\left(\dfrac{3}{11}+\dfrac{8}{11}\right)\)
\(=-1+0-1=-2\)
a)\(\left(5\dfrac{1}{7}-3\dfrac{3}{11}\right)-2\dfrac{1}{7}-1\dfrac{8}{11}\)
= \(\left(5+\dfrac{1}{7}-3+\dfrac{3}{11}\right)-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)
= \(5-\dfrac{1}{7}+3-\dfrac{3}{11}-2+\dfrac{1}{7}-1+\dfrac{8}{11}\)
= \(\left(5-3-2-1\right)+\dfrac{1}{7}+\dfrac{1}{7}+\dfrac{8}{11}-\dfrac{3}{11}\)
= \(-1+2+\dfrac{5}{11}\)
= \(1+\dfrac{5}{11}=\dfrac{1}{1}+\dfrac{5}{11}=\dfrac{11}{11}+\dfrac{5}{11}=\dfrac{16}{11}\)
Vậy :câu a) = \(\dfrac{16}{11}\)
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
a) Ta có: \(\dfrac{-3}{7}+\dfrac{15}{26}-\left(\dfrac{2}{13}-\dfrac{3}{7}\right)\)
\(=\dfrac{-3}{7}+\dfrac{15}{26}-\dfrac{2}{13}+\dfrac{3}{7}\)
\(=\dfrac{15}{26}-\dfrac{4}{26}\)
\(=\dfrac{11}{26}\)
b) Ta có: \(2\cdot\dfrac{3}{7}+\left(\dfrac{2}{9}-1\dfrac{3}{7}\right)-\dfrac{5}{3}:\dfrac{1}{9}\)
\(=\dfrac{6}{7}+\dfrac{2}{9}-\dfrac{10}{7}-\dfrac{5}{3}\cdot9\)
\(=\dfrac{-4}{7}+\dfrac{2}{9}-15\)
\(=\dfrac{-36}{63}+\dfrac{14}{63}-\dfrac{945}{63}\)
\(=\dfrac{-967}{63}\)
c) Ta có: \(\dfrac{-11}{23}\cdot\dfrac{6}{7}+\dfrac{8}{7}\cdot\dfrac{-11}{23}-\dfrac{1}{23}\)
\(=\dfrac{-11}{23}\cdot\left(\dfrac{6}{7}+\dfrac{8}{7}\right)-\dfrac{1}{23}\)
\(=\dfrac{-11}{23}\cdot2-\dfrac{1}{23}\)
\(=-1\)
d) Ta có: \(\left(\dfrac{377}{-231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{8}-\dfrac{1}{24}\right)\)
\(=\left(\dfrac{-377}{231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot\left(\dfrac{4}{24}-\dfrac{3}{24}-\dfrac{1}{24}\right)\)
\(=\left(\dfrac{-377}{231}-\dfrac{123}{89}+\dfrac{34}{791}\right)\cdot0\)
=0
a)A=\(\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(\dfrac{-3}{5}+\dfrac{3}{5}\right)+\left(\dfrac{5}{7}-\dfrac{5}{7}\right)+\left(\dfrac{-7}{9}+\dfrac{7}{9}\right)+\left(\dfrac{9}{11}-\dfrac{9}{11}\right)+\left(\dfrac{-11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)
A=0+0+0+...+0+\(\dfrac{13}{15}\)
A=\(\dfrac{13}{15}\)
b) Ta có: \(-\dfrac{1}{9\cdot10}-\dfrac{1}{8\cdot9}-\dfrac{1}{7\cdot8}-...-\dfrac{1}{2\cdot3}-\dfrac{1}{1\cdot2}\)
\(=-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\)
\(=-\left(1-\dfrac{1}{10}\right)=\dfrac{-9}{10}\)
\(A=\dfrac{-19}{9}.\dfrac{1}{2}-\dfrac{4}{11}.\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)=-\dfrac{23}{18}\)
\(B=\left(-\dfrac{15}{6}\right):\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}.\dfrac{-11}{2}=\dfrac{25}{4}\)
\(C=\dfrac{3}{4}.\left(-8\right)-\dfrac{1}{3}.\dfrac{-7}{2}-\dfrac{5}{18}=-\dfrac{46}{9}\)
\(A=\dfrac{-19}{18}+\dfrac{4}{9}-\dfrac{2}{3}=\dfrac{-19}{18}+\dfrac{8}{18}-\dfrac{12}{18}=\dfrac{-23}{18}\)
\(B=\dfrac{-5}{2}\cdot\dfrac{-2}{1}-\dfrac{7}{12}+\dfrac{11}{6}=\dfrac{5\cdot12-7+22}{12}=\dfrac{75}{12}=\dfrac{25}{4}\)
a: =11+3/4-6-5/6+4+1/2+1+2/3
=10+9/12-10/12+6/12+8/12
=10+13/12=133/12
b: \(=2+\dfrac{17}{20}-1-\dfrac{11}{15}+2+\dfrac{3}{20}\)
=3-11/15
=34/15
c: \(=\dfrac{31}{7}:\left(\dfrac{7}{5}\cdot\dfrac{31}{7}\right)\)
\(=\dfrac{31}{7}:\dfrac{31}{5}=\dfrac{5}{7}\)
d: \(=\dfrac{29}{8}\cdot\dfrac{36}{29}\cdot\dfrac{15}{23}\cdot\dfrac{23}{5}=\dfrac{9}{2}\cdot3=\dfrac{27}{2}\)
\(A=\dfrac{1}{3}.\dfrac{1}{7}+\dfrac{1}{7}.\dfrac{1}{11}+...+\dfrac{1}{95}.\dfrac{1}{99}\)
\(=\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{95.99}\)
\(=\dfrac{1}{4}\left(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{95.99}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)
\(=\dfrac{8}{99}\)
Vậy \(A=\dfrac{8}{99}\)
a: \(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}\)
\(=\dfrac{-3}{6}+\dfrac{5}{6}+\dfrac{2}{6}\)
\(=\dfrac{4}{6}=\dfrac{2}{3}\)
b: \(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}\)
\(=\dfrac{-9}{24}+\dfrac{42}{24}-\dfrac{2}{24}\)
\(=\dfrac{31}{24}\)
c: \(\dfrac{3}{5}:\left(\dfrac{1}{4}\cdot\dfrac{7}{5}\right)=\dfrac{3}{4}:\dfrac{7}{20}=\dfrac{3}{4}\cdot\dfrac{20}{7}=\dfrac{15}{7}\)
d: \(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}\)
\(=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=\dfrac{7}{8}\)
\(C=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{15}+....+\dfrac{1}{2011}-\dfrac{1}{2015}\right)\)
\(C=\dfrac{1}{4}\left(\dfrac{1}{3}-\dfrac{1}{2015}\right)=\dfrac{1}{4}\left(\dfrac{2012}{3.2015}\right)=\dfrac{503}{3.2015}\)