Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
B = 1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
B = 1 - 1/7
B = 6/7
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\)
\(=1-\frac{1}{7}\)
\(=\frac{6}{7}\)
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
=1.1.3.3.5.5...99.99/1.3.3.5.5.7.....99.101
=(1.3.5..99/1.3.5....99).(1.3.5....99/3.5.7...101)
=1.1/101
=1/101
\(C=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}....\frac{n^2}{\left(n+1\right)^2-1}\)
\(=\frac{1^2}{1.3}.\frac{3^2}{3.5}.\frac{5^2}{5.7}.....\frac{n^2}{n.\left(n+2\right)}\)
\(=\frac{1}{n+2}\)
\(B=\frac{1^2}{2^2-1}.\frac{3^2}{4^2-1}.\frac{5^2}{6^2-1}...\frac{\left(2n+1\right)^2}{\left(2n+2\right)^2-1}\)
\(=\frac{1^2}{\left(2-1\right)\left(2+1\right)}.\frac{3^2}{\left(4-1\right)\left(4+1\right)}...\frac{\left(2n+1\right)^2}{\left(2n+2-1\right)\left(2n+2+1\right)}\)
\(=\frac{1}{1.3}.\frac{3^2}{3.5}...\frac{\left(2n+1\right)^2}{\left(2n+1\right)\left(2n+3\right)}\)
\(=\frac{1}{2n+3}\)
a) \(\left(x-1\right)^2-\left(x+3\right)^2+\left(x+4\right)\left(x-4\right)\)
\(=x^2-2x+1-\left(x^2+6x+9\right)+x^2-16\)
\(=x^2-2x+1-x^2-6x-9+x^2-16=-8x-24\)
b)
\(2\left(3x-2\right)^2-3\left(2x+5\right)^2-6\left(x+1\right)\left(x-1\right)\)
\(=2\left(9x^2-12x+4\right)-3\left(4x^2+20x+25\right)-6\left(x^2-1\right)\)
\(=18x^2-24x+8-12x^2-60x-75-6x^2+6=-84x-61\)