Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\sqrt{3}+\sqrt{7}}{\sqrt{3}-\sqrt{7}}+\frac{\sqrt{3}-\sqrt{7}}{\sqrt{3}+\sqrt{7}}\)
\(=\frac{\left(\sqrt{3}+\sqrt{7}\right)\left(\sqrt{3}+\sqrt{7}\right)+\left(\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}-\sqrt{7}\right)}{\left(\sqrt{3}-\sqrt{7}\right)\left(\sqrt{3}+\sqrt{7}\right)}\)
\(=\frac{\left(\sqrt{3}+\sqrt{7}\right)^2+\left(\sqrt{3}-\sqrt{7}\right)^2}{3-7}\)
\(=\frac{3+2\sqrt{3}.\sqrt{7}+7+3-2\sqrt{3}.\sqrt{7}+7}{-4}\)
\(=\frac{3+7+3+7}{-4}\)
\(=\frac{20}{-4}=-5\)
\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2-\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20+10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
= 5
\(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)
\(=\dfrac{\sqrt{3}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)
\(=\dfrac{\sqrt{3}-\sqrt{2}-\sqrt{3}+3+\sqrt{2}}{\sqrt{5}+1+\sqrt{2}-\sqrt{2}-\sqrt{5}}\)
\(=3\)
a: \(=\dfrac{1}{\sqrt{6}-1+1}-\dfrac{1}{\sqrt{6}+1-1}\)
\(=\dfrac{1}{\sqrt{6}}-\dfrac{1}{\sqrt{6}}\)
=0
b: \(=\dfrac{3+\sqrt{7}-3+\sqrt{7}}{2}=\dfrac{2\sqrt{7}}{2}=\sqrt{7}\)
c: \(=\sqrt{\left(3\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3\sqrt{2}-\sqrt{3}\right)^2}\)
\(=3\sqrt{2}+\sqrt{3}+3\sqrt{2}-\sqrt{3}=6\sqrt{2}\)
:) trình bày các bước đi bạn :)) ai lại làm thế :v Bấm casio à :)
\(H=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(H^2=4+\sqrt{7}+4-\sqrt{7}+2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}\)
\(=8-2\sqrt{16-7}=8-6=2\)
\(\Rightarrow H=\sqrt{2}\Rightarrow\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}-2=0\)
Vậy .....................
\(A=\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7}+\sqrt{3}}\)
=>\(A^2=\sqrt{7}-\sqrt{3}+\sqrt{7}+\sqrt{3}-2\sqrt{4}\)
=>A^2=2căn 7-4
=>A=2căn 7-4
=>\(M=\dfrac{2\left(\sqrt{7}-2\right)}{\sqrt{7}-2}=2\)