\(\sqrt{x-2\sqrt{2x-4}}+\sqrt{x+2\sqrt{2x-4}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x≥2

A=√x+2√2x−4+√x−2√2x−4

=√x−2+2.√x−2.√2+2+√x−2−2.√x−2.√2+2

=√(√x−2+√2)2+√(√x−2−√2)2

=|√x−2+√2|+|√x−2−√2|=√x−2+√2+|√x−2−√2|

Xét x≥4⇒√x−2≥√2

⇒A=√x−2+√2+√x−2−√2=2√x−2

Xét 0≤x<4⇒√x−2<√2

⇒A=√x−2+√2−√x−2+√2=2√2

13 tháng 7 2018

Vì hai vế đều dương nên bình phương hai vế, ta được:

\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)

      \(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)

        \(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)

         =2x + 2√ (x-4)^2 = 2x + 2|x-4|

Đến đây bạn tự làm tiếp nha (với x>2)

22 tháng 6 2018

phần a nhân căn 2 cả tử và mẫu bạn nha

22 tháng 6 2018

phần a nhân căn 2 cả tử và mẫu . 

bài này mình rồi bạn ạ .

30 tháng 6 2019

\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)

\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)

\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)

\(\Rightarrow A=\sqrt{2}\)

ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)

\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)

\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)

\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)

Tự phá trị tuyệt đối

20 tháng 8 2016

a/ Sai đề. 

\(x+2\sqrt{2x-4}=\left(x-2\right)+2.\sqrt{2}.\sqrt{x-2}+2=\left(\sqrt{2}+\sqrt{x-2}\right)^2\)

b/ \(M=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)

\(=\sqrt{2}+\sqrt{x-2}+\left|\sqrt{2}-\sqrt{x-2}\right|\)

1. Nếu \(2\le x\le4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)

2. Nếu \(x>4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)

27 tháng 6 2017

t­ygygyssgyw

27 tháng 6 2017

\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)

\(\Leftrightarrow A^2=2x+2\sqrt{x^2-8x+16}=\)

\(=2x+\sqrt{\left(x-4\right)^2}\)

\(=2x+|x-4|\)

\(=\hept{\begin{cases}2x-x+4=x+4\left(2\le x< 4\right)\\2x+x-4=3x-4\left(x\ge4\right)\end{cases}}\)

\(\Rightarrow A=\hept{\begin{cases}\sqrt{x+4}\left(2\le x< 4\right)\\\sqrt{3x-4}\left(x\ge4\right)\end{cases}}\)