Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hai vế đều dương nên bình phương hai vế, ta được:
\(H^2=\left(\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\right)^2\)
\(=x+2\sqrt{2x-4}+x-2\sqrt{2x-4}+2\sqrt{\left(x+2\sqrt{2x-4}\right)\left(x-2\sqrt{2x-4}\right)}\)
\(=2x+2\sqrt{x^2-4\left(2x-4\right)}=2x+2\sqrt{x^2-8x+16}\)
=2x + 2√ (x-4)^2 = 2x + 2|x-4|
Đến đây bạn tự làm tiếp nha (với x>2)
\(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3.\sqrt{5}}-\sqrt{2}\)
\(\sqrt{2}.A=\sqrt{5+2\sqrt{5}.1+1}+\sqrt{9-2.3.\sqrt{5}+5}-2\)
\(\sqrt{2}.A=\sqrt{5}+1+3-\sqrt{5}-2=2\)
\(\Rightarrow A=\sqrt{2}\)
ĐKXĐ: \(\hept{\begin{cases}2x-4\ge0\\x+2.\sqrt{2x-4}\ge0\\x-2\sqrt{2x-4}\end{cases}}\Leftrightarrow x\ge2\)
\(\sqrt{x+2.\sqrt{2x-4}}+\sqrt{x-2.\sqrt{2x-4}}\)
\(=\sqrt{x-2+2.\sqrt{x-2}.\sqrt{2}+2}+\sqrt{x-2-2.\sqrt{x-2}.\sqrt{2}+2}\)
\(=\sqrt{x-2}+\sqrt{2}+\left|\sqrt{x-2}-\sqrt{2}\right|\)
Tự phá trị tuyệt đối
a/ Sai đề.
\(x+2\sqrt{2x-4}=\left(x-2\right)+2.\sqrt{2}.\sqrt{x-2}+2=\left(\sqrt{2}+\sqrt{x-2}\right)^2\)
b/ \(M=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)
\(=\sqrt{2}+\sqrt{x-2}+\left|\sqrt{2}-\sqrt{x-2}\right|\)
1. Nếu \(2\le x\le4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)
2. Nếu \(x>4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)
\(A=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}\)
\(\Leftrightarrow A^2=2x+2\sqrt{x^2-8x+16}=\)
\(=2x+\sqrt{\left(x-4\right)^2}\)
\(=2x+|x-4|\)
\(=\hept{\begin{cases}2x-x+4=x+4\left(2\le x< 4\right)\\2x+x-4=3x-4\left(x\ge4\right)\end{cases}}\)
\(\Rightarrow A=\hept{\begin{cases}\sqrt{x+4}\left(2\le x< 4\right)\\\sqrt{3x-4}\left(x\ge4\right)\end{cases}}\)
ĐKXĐ: x≥2
A=√x+2√2x−4+√x−2√2x−4
=√x−2+2.√x−2.√2+2+√x−2−2.√x−2.√2+2
=√(√x−2+√2)2+√(√x−2−√2)2
=|√x−2+√2|+|√x−2−√2|=√x−2+√2+|√x−2−√2|
Xét x≥4⇒√x−2≥√2
⇒A=√x−2+√2+√x−2−√2=2√x−2
Xét 0≤x<4⇒√x−2<√2
⇒A=√x−2+√2−√x−2+√2=2√2