Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(M=\dfrac{x-7}{x-4\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-3}\)
\(=\dfrac{x-7+\sqrt{x}-3-\sqrt{x}+1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}-1}\)
b) Để \(M>\dfrac{3}{4}\) thì \(M-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{\sqrt{x}+3}{\sqrt{x}-1}-\dfrac{3}{4}>0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+12-3\sqrt{x}+3}{4\left(\sqrt{x}-1\right)}>0\)
\(\Leftrightarrow\sqrt{x}-1>0\)
\(\Leftrightarrow x>1\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>1\\x\ne9\end{matrix}\right.\)
a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)
=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)
=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)
=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)
Để BPT luôn đúng thì m<-0,3
a: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
b: Khi \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\) thì
\(M=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}-2}{\sqrt{\left(\sqrt{2}+1\right)^2}}=\dfrac{\sqrt{2}+1-2}{\sqrt{2}+1}\)
\(=\dfrac{\sqrt{2}-1}{\sqrt{2}+1}=\left(\sqrt{2}-1\right)^2=3-2\sqrt{2}\)
c: M>0
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}>0\)
mà \(\sqrt{x}>0\)
nên \(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
a:\(M=\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}\)
\(=\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|\)
\(=\sqrt{x-4}+2+\sqrt{x-4}-2=2\sqrt{x-4}\)
b: \(M=2\sqrt{\sqrt{15+\sqrt{6}}-4}\simeq0.088\)
a) \(P=\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\\ =\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}=\dfrac{4x}{\sqrt{x}-3}\)
\(\left(x\ge0;x\ne4;9\right)\)
b)\(P=-1\Leftrightarrow4x+\sqrt{x}-3=0\Leftrightarrow\sqrt{x}=\dfrac{3}{4}\Leftrightarrow x=\dfrac{9}{16}\)
c) bpt đưa về dạng \(4mx>x+1\Leftrightarrow\left(4x-1\right)x>1\)
Nếu \(4m-1\le0\) thì tập nghiệm không thể chứa mọi giá trị \(x>9\); Nếu \(4m-1>0\) thì tập nghiệm bpt là \(x>\dfrac{1}{4m-1}\). Do đó bpt tm mọi \(x>9\Leftrightarrow9\ge\dfrac{1}{4m-1}\) và \(4m-1>0\). ta có \(m\ge\dfrac{5}{18}\)
a: \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{x+\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-1+2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
c: A/B>4/3
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}}:\dfrac{\sqrt{x}+2}{\sqrt{x}+1}>\dfrac{4}{3}\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{4}{3}>0\)
=>\(\dfrac{3\left(\sqrt{x}+1\right)-4\sqrt{x}}{3\sqrt{x}}>0\)
=>\(3\left(\sqrt{x}+1\right)-4\sqrt{x}>0\)
=>\(3\sqrt{x}+3-4\sqrt{x}>0\)
=>\(-\sqrt{x}>-3\)
=>\(\sqrt{x}< 3\)
=>0<=x<9
Kết hợp ĐKXĐ, ta được: 0<x<9
Dễ mà
\(M=\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}=4\)
\(\Leftrightarrow\sqrt{\left(x-4\right)+4\sqrt{x-4}+4}+\sqrt{\left(x-4\right)-4\sqrt{x-4}+4}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)}^2=4\)
\(\Leftrightarrow\left|\sqrt{x-4}+2\right|+\left|\sqrt{x-4}-2\right|=4\)
Ta có : \(\left|\sqrt{x-4}-2\right|= \left|2-\sqrt{x-4}\right|\)
Áp dụng BĐT \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có :
\(\left|\sqrt{x-4}+2\right|+\left|2-\sqrt{x-4}\right|\ge\left|\sqrt{x-4}+2+2-\sqrt{x-4}\right|=4\)
Dấu \("="\) xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-4}+2\ge0\\2-\sqrt{x-4}\ge0\end{matrix}\right.\Rightarrow x\le8\)
Kết hợp với điều kiện ban đầu \(\Rightarrow4\le x\le8\)