Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{3x+6x^2+2x-4x^2}{\left(1-2x\right)\left(1+2x\right)}\cdot\dfrac{\left(1-2x\right)^2}{x\left(2x+5\right)}\)
\(=\dfrac{1-2x}{1+2x}\)
\(\left[\frac{x}{\left(x+4\right)\left(x-4\right)}-\frac{x-4}{x\left(x+4\right)}\right]:\frac{2\left(x-2\right)}{x\left(x+4\right)}\)\(=\left[\frac{x^2-\left(x-4\right)^2}{x\left(x+4\right)\left(x-4\right)}\right].\left[\frac{x\left(x+4\right)}{2\left(x-2\right)}\right]\)\(=\left(\frac{x^2-x^2+8x-16}{x\left(x+4\right)\left(X-4\right)}\right).\frac{x\left(x+4\right)}{2\left(x-2\right)}=\frac{8\left(x-2\right).x\left(x+4\right)}{x\left(x+4\right)\left(x-4\right).2\left(x-2\right)}=\frac{4}{x-4}\)
=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)
=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)
=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)
=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)
Bài 2:
c) \(3x-\left|2x+1\right|=2\)
\(\Rightarrow\left|2x+1\right|=3x-2\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=3x-2\\2x+1=2-3x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-3x=\left(-2\right)-1\\2x+3x=2-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=-3\\5x=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3:1\\x=1:5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\frac{1}{5}\end{matrix}\right.\)
Vậy \(x\in\left\{3;\frac{1}{5}\right\}.\)
Chúc bạn học tốt!
Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)
\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)
\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)
\(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\le0\)
Nhận thấy: \(\left|2x+1\right|\ge0\); \(\left|x+y-\frac{1}{2}\right|\ge0\)
=> \(\left|2x+1\right|+\left|x+y-\frac{1}{2}\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+1=0\\x+y-\frac{1}{2}=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-\frac{1}{2}\\y=1\end{cases}}\)
đến đây bạn thay x,y tìm đc vào A để tính nhé
a: =>\(\left(x+1\right)^{x+7}-\left(x+1\right)^{x+5}=0\)
=>x(x+1)(x+2)=0
hay \(x\in\left\{0;-1;-2\right\}\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{7}=\dfrac{z}{\dfrac{5}{2}}=\dfrac{3x-5y+6z}{3\cdot3-5\cdot7+6\cdot\dfrac{5}{2}}=\dfrac{21}{-11}=\dfrac{-21}{11}\)
Do đó: x=-63/11; y=-147/11; z=-105/22
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{12}=\dfrac{x+y+z}{15+20+12}=\dfrac{\dfrac{-7}{2}}{47}=-\dfrac{7}{94}\)
Do đó: x=-105/94; y=-140/94=-70/47; z=-84/94=-42/47
Đây mà là toán lp 7 à???
mk ko biết cứ bấm đại thui, bn có thể giúp mk ko ???