Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)\(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}=\frac{2.3+2.2.6+2.7.21}{3.5+3.2.10+3.7.35}=\frac{2.3+2.12+2.147}{3.5+3.20+3.245}=\frac{2\left(3+12+147\right)}{3\left(5+20+245\right)}\)
\(=\frac{2.162}{3.270}=\frac{54}{135}=\frac{2}{5}\)
\(a.\frac{-2019.2018+1}{\left(-2017\right).\left(-2019\right)+2018}\)
\(=\frac{2019.\left(-2018\right)+1}{2019.2017+2018}\)
\(=\frac{2019.\left(-2018\right)+1}{2019.2018-1}\)
\(=-\frac{2018}{2018}\)
\(=-1\)
Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :
\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)
\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)
\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)
\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)
\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)
\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)
Có \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\)
\(\Rightarrow A< B\)
A=(-a - b + c) - (-a-b-c)
A= -a-b+c - (-a)+b+c
A= -a+(-b)+c + a+b+c
A= (-a + a) + (-b+b) + c+c
A=0+0 +c +c
B= -1 + 3 - 5 + 7-9 + 11 -......- 2017+ 2019
B= (-1)+3+(-5)+7+(-9)+11+......+(-2017)+2019
B= [(-1)+3]+[(-5)+7]+[(-9)+11]+......+[(-2017)+2019]
B= (-2) + (-2) + (-2) +.......+ (-2)
Tổng B có số số hạng là:
[ 2019 - 1]:2+1=1010(số hạng)
Tổng B số cặp là:
1010:2=505(cặp)
=>B= (-2) + (-2) + (-2) +.......+ (-2) (505 số hạng)
B= (-2) . 505
B= -1010
Vậy B = -1010
đặt 22018 = a ; 32019 = b ; 52020 = c
Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)
\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)
\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)
\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)
\(B< \frac{3}{4}\)
\(\Rightarrow A>1>\frac{3}{4}>B\)
Mình chỉ biết cách tính B thôi, đây nhé:
B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)
B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)
\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)
27/-72 = 27:(-9)/-72:(-9) = -3/8
-2020:(-2020)/-4040:(-2020) = 1/2
11.8-11.3/17-6= 11.(8-3)/11= 11.5/11= 5
20-12.30/30+30.10 = 20-360/30+300 = -340/330 = -34/33 = -1 1/33
\(\text{#TuanNam}\)
`27/-72=-27/72=`\(\dfrac{-27\div9}{72\div9}=\dfrac{-3}{8}\)
`-2020/-4040=202/404=`\(\dfrac{202\div202}{404\div202}=\dfrac{1}{2}\)
`11*8-`\(\dfrac{11\cdot3}{17-6}=88-3=85\)
\(\dfrac{20-12\cdot20}{30+30\cdot10}=\dfrac{20\cdot\left(1-12\right)}{30\cdot\left(1+10\right)}=\dfrac{20\cdot-11}{30\cdot11}=-\dfrac{2}{3}\)
Xét mẫu :
Đặt P = 1 + 2 + ... + 22017
=> 2P = 2 + 22 + ... + 22018
=> 2P - P = ( 2 + 22 + ... + 22018 ) - ( 1 + 2 + ... + 22017 )
=> P = 22018 - 1
=> M = \(\frac{2^{2019}-2}{2^{2018}-1}\)
\(M=1+2+...+2^{2017}\)
\(\Rightarrow2M=2+2^2+...2^{2018}\)
\(\Rightarrow2M-M=\left(2+2^2+...+2^{2018}\right)-\left(1+2+...+2^{2017}\right)\)
\(\Rightarrow M=2^{2018}-1\)
\(\Rightarrow M=\frac{2^{2019}-2}{2^{2018}-1}\)
\(k.nha\)
\(\frac{2019.2020-4040}{2017.2018+4034}\)=\(\frac{\left(2017+2\right).2020-4040}{2017.2018+2017.2}\)
=\(\frac{2017.2020+2.2020-4040}{2017.\left(2018+2\right)}\)
=\(\frac{2017.2020+4040-4040}{2017.2020}\)
=\(\frac{2017.2020+0}{2017.2020}\)
=\(\frac{1}{1}\)=1