K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2020

\(\frac{2019.2020-4040}{2017.2018+4034}\)=\(\frac{\left(2017+2\right).2020-4040}{2017.2018+2017.2}\)

=\(\frac{2017.2020+2.2020-4040}{2017.\left(2018+2\right)}\)

=\(\frac{2017.2020+4040-4040}{2017.2020}\)

=\(\frac{2017.2020+0}{2017.2020}\)

=\(\frac{1}{1}\)=1

d)\(\frac{2.3+4.6+14.21}{3.5+6.10+21.35}=\frac{2.3+2.2.6+2.7.21}{3.5+3.2.10+3.7.35}=\frac{2.3+2.12+2.147}{3.5+3.20+3.245}=\frac{2\left(3+12+147\right)}{3\left(5+20+245\right)}\)

\(=\frac{2.162}{3.270}=\frac{54}{135}=\frac{2}{5}\)

3 tháng 5 2019

\(a.\frac{-2019.2018+1}{\left(-2017\right).\left(-2019\right)+2018}\)

\(=\frac{2019.\left(-2018\right)+1}{2019.2017+2018}\)

\(=\frac{2019.\left(-2018\right)+1}{2019.2018-1}\)

\(=-\frac{2018}{2018}\)

\(=-1\)

17 tháng 6 2019

Ta đi so sánh \(\frac{2017.2018+1}{2017.2018}\)với\(\frac{2018.2019+1}{2018.2019}\)có :

\(\frac{2017.2018+1}{2017.2018}=\frac{2017.2018}{2017.2018}+\frac{1}{2017.2018}=1+\frac{1}{2017.2018}\left(\cdot\right)\)

\(\frac{2018.2019+1}{2018.2019}=\frac{2018.2019}{2018.2019}+\frac{1}{2018.2019}\left(\cdot\cdot\right)\)

\(\frac{1}{2017.2018}>\frac{1}{2018.2019}\left(\cdot\cdot\cdot\right)\)Từ \(\left(\cdot\right);\left(\cdot\cdot\right)\&\left(\cdot\cdot\cdot\right)\Rightarrow\frac{2017.2018+1}{2017.2018}>\frac{2018.2019+1}{2018.2019}\)

\(\Leftrightarrow\frac{2017.2018}{2017.2018+1}< \frac{2018.2019}{2018.2019+1}.\)

17 tháng 6 2019

#)Trả lời :

\(\frac{2017\times2018}{2017\times2018+1}=\frac{0}{1}=0\)

\(\frac{2018\times2019}{2018\times2019+1}=\frac{0}{1}=0\)

\(\Rightarrow\frac{2017\times2018}{2017\times2018+1}=\frac{2018\times2019}{2018\times2019+1}\)

24 tháng 7 2018

\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

Có \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\)

\(\Rightarrow A< B\)

24 tháng 7 2018

\(A=\frac{2017.2018-1}{2017.2018}=1-\frac{1}{2017.2018}\)

\(B=\frac{2018.2019-1}{2018.2019}=1-\frac{1}{2018.2019}\)

Do  \(\frac{1}{2017.2018}>\frac{1}{2018.2019}\)nên  \(1-\frac{1}{2017.2018}< 1-\frac{1}{2018.2019}\)

Vậy  \(A< B\)

27 tháng 1 2019

A=(-a - b + c) - (-a-b-c)

A= -a-b+c - (-a)+b+c

A= -a+(-b)+c + a+b+c

A= (-a + a) + (-b+b) + c+c

A=0+0 +c +c

27 tháng 1 2019

B= -1 + 3 - 5 + 7-9 + 11 -......- 2017+ 2019

B= (-1)+3+(-5)+7+(-9)+11+......+(-2017)+2019

B= [(-1)+3]+[(-5)+7]+[(-9)+11]+......+[(-2017)+2019]

B=   (-2) + (-2) + (-2) +.......+ (-2)

    Tổng B có số số hạng là:

        [ 2019 - 1]:2+1=1010(số hạng)

     Tổng B số cặp là:

            1010:2=505(cặp)

        =>B= (-2) + (-2) + (-2) +.......+ (-2) (505 số hạng)

            B= (-2) . 505

            B=   -1010

            Vậy B = -1010     

                

22 tháng 5 2019

đặt 22018 = a ; 32019 = b ; 52020 = c

Ta có : \(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(B=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)

\(2B=\frac{2}{1.2}+\frac{2}{3.4}+...+\frac{2}{2019.2020}\)

\(< 1+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2018.2019}+\frac{1}{2019.2020}\)

\(2B< 1+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2019-2018}{2018.2019}+\frac{2020-2019}{2019.2020}\)

\(2B< 1+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}=1+\frac{1}{2}-\frac{1}{2020}< 1+\frac{1}{2}\)

\(B< \frac{3}{4}\)

\(\Rightarrow A>1>\frac{3}{4}>B\)

22 tháng 5 2019

Mình chỉ biết cách tính B thôi, đây nhé:

B= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2019.2020}\)

B=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2019}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2020}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-2\frac{1}{2}\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2019}+\frac{1}{2020}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1010}\right)\)

\(B=\frac{1}{1011}+\frac{1}{1012}+....+\frac{1}{2019}+\frac{1}{2020}\)

6 tháng 3 2023

27/-72 = 27:(-9)/-72:(-9) = -3/8

-2020:(-2020)/-4040:(-2020) = 1/2

11.8-11.3/17-6= 11.(8-3)/11= 11.5/11= 5

20-12.30/30+30.10 = 20-360/30+300 = -340/330 = -34/33 = -1 1/33

7 tháng 3 2023

\(\text{#TuanNam}\)

`27/-72=-27/72=`\(\dfrac{-27\div9}{72\div9}=\dfrac{-3}{8}\) 

`-2020/-4040=202/404=`\(\dfrac{202\div202}{404\div202}=\dfrac{1}{2}\)

`11*8-`\(\dfrac{11\cdot3}{17-6}=88-3=85\) 

\(\dfrac{20-12\cdot20}{30+30\cdot10}=\dfrac{20\cdot\left(1-12\right)}{30\cdot\left(1+10\right)}=\dfrac{20\cdot-11}{30\cdot11}=-\dfrac{2}{3}\) 

20 tháng 9 2018

Xét mẫu :

Đặt P = 1 + 2 + ... + 22017

=> 2P = 2 + 22 + ... + 22018 

=> 2P - P = ( 2 + 22 + ... + 22018 ) - ( 1 + 2 + ... + 22017 )

=> P = 22018 - 1

=> M = \(\frac{2^{2019}-2}{2^{2018}-1}\)

20 tháng 9 2018

\(M=1+2+...+2^{2017}\)

\(\Rightarrow2M=2+2^2+...2^{2018}\)

\(\Rightarrow2M-M=\left(2+2^2+...+2^{2018}\right)-\left(1+2+...+2^{2017}\right)\)

\(\Rightarrow M=2^{2018}-1\)

\(\Rightarrow M=\frac{2^{2019}-2}{2^{2018}-1}\)

\(k.nha\)

10 tháng 2 2022

-12/18=-2/3;-4040/6060=-2/3;7^4.2^2+7^4.3^2/49.26=49/2