Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:ĐK: $a\geq 0; a\neq 9; a\neq 4$
a)
\(A=\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{\sqrt{a}+3}{\sqrt{a}-2}+\frac{2\sqrt{a}+1}{\sqrt{a}-3}\)
\(\frac{2\sqrt{a}-9}{(\sqrt{a}-2)(\sqrt{a}-3)}-\frac{(\sqrt{a}+3)(\sqrt{a}-3)}{(\sqrt{a}-2)(\sqrt{a}-3)}+\frac{(2\sqrt{a}+1)(\ \sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}\)
\(=\frac{2\sqrt{a}-9-(a-9)+(2a-3\sqrt{a}-2)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{a-\sqrt{a}-2}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{(\sqrt{a}-2)(\sqrt{a}+1)}{(\sqrt{a}-3)(\sqrt{a}-2)}=\frac{\sqrt{a}+1}{\sqrt{a}-3}\)
b) Để \(A< 1\Leftrightarrow \frac{\sqrt{a}+1}{\sqrt{a}-3}<1\Leftrightarrow 1+\frac{4}{\sqrt{a}-3}<1\)
\(\Leftrightarrow \frac{4}{\sqrt{a}-3}< 0\Leftrightarrow \sqrt{a}-3< 0\Leftrightarrow 0\leq a< 9\)
Kết hợp ĐKXĐ: suy ra $0\leq a< 9; a\neq 4$
c) Với $a$ nguyên, \(A=1+\frac{4}{\sqrt{a}-3}\in\mathbb{Z}\Leftrightarrow 4\vdots \sqrt{a}-3\)
$\Rightarrow \sqrt{a}-3\in\left\{\pm 1; \pm 2;\pm 4\right\}$
$\Rightarrow a\in\left\{4;16; 1;25; 49\right\}$
Kết hợp ĐKXĐ suy ra $a\in\left\{16;1;25;49\right\}$
ĐKXĐ: \(\left\{{}\begin{matrix}a\ge0\\a\notin\left\{4;9\right\}\end{matrix}\right.\)
a) Ta có: \(A=\dfrac{2\sqrt{a}-9}{a-5\sqrt{a}+6}-\dfrac{\sqrt{a}+3}{\sqrt{a}-2}-\dfrac{2\sqrt{a}+1}{3-\sqrt{a}}\)
\(=\dfrac{\left(2\sqrt{a}-9\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}-\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}+\dfrac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{2\sqrt{a}-9-\left(a-9\right)+2a-4\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{2a-\sqrt{a}-11-a+9}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{a-2\sqrt{a}+\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}\left(\sqrt{a}-2\right)+\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-3\right)}\)
\(=\dfrac{\sqrt{a}+1}{\sqrt{a}-3}\)
b) Để A<1 thì A-1<0
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-1< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1}{\sqrt{a}-3}-\dfrac{\sqrt{a}-3}{\sqrt{a}-3}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{a}+1-\sqrt{a}+3}{\sqrt{a}-3}< 0\)
\(\Leftrightarrow\dfrac{4}{\sqrt{a}-3}< 0\)
mà 4>0
nên \(\sqrt{a}-3< 0\)
\(\Leftrightarrow\sqrt{a}< 3\)
hay a<9
Kết hợp ĐKXĐ, ta được:
\(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)
Vậy: Để A<1 thì \(\left\{{}\begin{matrix}0\le a< 9\\a\ne4\end{matrix}\right.\)
c) Để A nguyên thì \(\sqrt{a}+1⋮\sqrt{a}-3\)
\(\Leftrightarrow\sqrt{a}-3+4⋮\sqrt{a}-3\)
mà \(\sqrt{a}-3⋮\sqrt{a}-3\)
nên \(4⋮\sqrt{a}-3\)
\(\Leftrightarrow\sqrt{a}-3\inƯ\left(4\right)\)
\(\Leftrightarrow\sqrt{a}-3\in\left\{1;-1;2;-2;4;-4\right\}\)
mà \(\sqrt{a}-3\ge-3\forall a\) thỏa mãn ĐKXĐ
nên \(\sqrt{a}-3\in\left\{1;-1;2;-2;4\right\}\)
\(\Leftrightarrow\sqrt{a}\in\left\{4;2;5;1;7\right\}\)
\(\Leftrightarrow a\in\left\{16;4;25;1;49\right\}\)
Kết hợp ĐKXĐ, ta được: \(a\in\left\{1;16;25;49\right\}\)
Vậy: Để A nguyên thì \(a\in\left\{1;16;25;49\right\}\)
a: \(A=\dfrac{2x-6\sqrt{x}+\sqrt{x}-3-2x+4\sqrt{x}+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{3x-3\sqrt{x}-\sqrt{x}-4}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1}{3x-4\sqrt{x}-4}\)
\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{3x-6\sqrt{x}+2\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{3\sqrt{x}+2}{\sqrt{x}-1}\)
b: Để A<2 thì \(\dfrac{3\sqrt{x}+2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)}< 0\)
=>x<1
1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)
Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)
1:
\(A=\sqrt{x^2+\dfrac{2x^2}{3}}=\sqrt{\dfrac{5x^2}{3}}=\left|\sqrt{\dfrac{5}{3}}x\right|=-x\sqrt{\dfrac{5}{3}}\)
2: \(=\left(\dfrac{\sqrt{100}+\sqrt{40}}{\sqrt{5}+\sqrt{2}}+\sqrt{6}\right)\cdot\dfrac{2\sqrt{5}-\sqrt{6}}{2}\)
\(=\dfrac{\left(2\sqrt{5}+\sqrt{6}\right)\left(2\sqrt{5}-\sqrt{6}\right)}{2}\)
\(=\dfrac{20-6}{2}=7\)
a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+1}-\dfrac{6\sqrt{x}-4}{x-1}\)
\(=\dfrac{x+\sqrt{x}+3\sqrt{x}-3-6\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)
Thay \(x=6-2\sqrt{5}\) vào A, ta được:
\(A=\dfrac{\sqrt{5}-1-1}{\sqrt{5}-1+1}=\dfrac{\sqrt{5}-2}{\sqrt{5}}=\dfrac{5-2\sqrt{5}}{5}\)
b: Để \(A< \dfrac{1}{2}\) thì \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow2\sqrt{x}-2-\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 9\)
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
a,bn viết đúng đề xíu nhé \(\dfrac{\sqrt{a}+2}{\sqrt{a+3}}\) sửa \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}\)
đk: \(a\ge0,a\ne4\)
=>\(P=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{1}{\sqrt{a}-2}\)
\(=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)\(=\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b, \(P=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}=1+\dfrac{-2}{\sqrt{a}-2}\) nguyên\(< =>\sqrt{a}-2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(=>a\in\left\{9;1;16;0\right\}\)(TM)
a) P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\left(ĐKXĐ:a\ge0;a\ne4\right)\)
P = \(\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}-\dfrac{1}{\sqrt{a}-2}\)
P = \(\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\left(\sqrt{a}-4\right)\left(\sqrt{a}+3\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+3\right)}\)
P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b) Ta có: P = \(\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\) = 1 - \(\dfrac{2}{\sqrt{a}-2}\)
Để \(P\in Z\) <=> 1 - \(\dfrac{2}{\sqrt{a}-2}\) \(\in Z\) <=> \(\sqrt{a}-2\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Ta có bảng sau:
\(\sqrt{a}-2\) | 1 | -1 | 2 | -2 |
\(\sqrt{a}\) | 3 | 1 | 4 | 0 |
a | 9 (TM) | 1 (TM) | 16 (TM) | 0 (TM) |
Vậy để \(P\in Z\) thì \(a\in\left\{0;1;9;16\right\}\)
a) ĐKXĐ: \(a>1;a\ne-1\)
\(B=\left(\dfrac{3}{\sqrt{1+a}}+\dfrac{\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}\right):\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)
\(\Leftrightarrow B=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1+a}.\sqrt{1-a}}{3+\sqrt{1+a}.\sqrt{1-a}}\)
\(\Leftrightarrow B=\sqrt{1-a}\)
b) Thay a=\(\dfrac{\sqrt{3}}{2+\sqrt{3}}\) vào B ta được:
\(B=\sqrt{1-\dfrac{\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2+\sqrt{3}-\sqrt{3}}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\) \(=\sqrt{\dfrac{2}{2+\sqrt{3}}}\)
\(\Leftrightarrow B\)\(=\sqrt{\dfrac{4}{4+2\sqrt{3}}}\) \(\Leftrightarrow B\) \(=\dfrac{\sqrt{4}}{\sqrt{3+2\sqrt{3}+1}}\)
\(\Leftrightarrow B=\dfrac{2}{\sqrt{\left(\sqrt{3}+1\right)^2}}\) \(\Leftrightarrow B=\dfrac{2}{\sqrt{3}+1}=\dfrac{2.\left(\sqrt{3}-1\right)}{3-1}=\sqrt{3}-1\)
c) Có \(\sqrt{B}>B\) \(\Leftrightarrow\sqrt{\sqrt{1-a}}>\sqrt{1-a}\)
\(\Leftrightarrow\sqrt{1-a}>1-a\)
\(\Leftrightarrow\sqrt{1-a}-\left(1-a\right)>0\)
\(\Leftrightarrow\sqrt{1-a}.\left(1-\sqrt{1-a}\right)>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{1-a}>0\\1-\sqrt{1-a}>0\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{1-a}< 0\\1-\sqrt{1-a}< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a< 1\\a>0\end{matrix}\right.\\\left\{{}\begin{matrix}a>1\\a< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}0< a< 1\\a>1;a< 0\end{matrix}\right.\)
ĐK: \(a\ge0;a\ne4\)
a) ⇔ \(P=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
⇔ \(P=\dfrac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}=\dfrac{\sqrt{a}-4}{\sqrt{a}-2}\)
b) \(P< 1\Leftrightarrow\dfrac{\sqrt{a}-4}{\sqrt{a}-2}< 1\)
\(\Leftrightarrow\dfrac{\sqrt{a}-4}{\sqrt{a}-2}-1< 0\Leftrightarrow\dfrac{-2}{\sqrt{a}-2}< 0\)
Do \(-2< 0\) ⇔ \(\sqrt{a}-2< 0\Leftrightarrow a< 4\)
Kết hợp điều kiện ban đầu, ta có: \(0< a< 4\)
Vậy khi \(0< a< 4\) thì \(P< 1\)
ĐK:\(a\ge0;a\ne9\)
\(B=\frac{\sqrt{a}+3}{2\left(\sqrt{a}-3\right)}+\frac{\sqrt{a}-3}{2\left(\sqrt{a}+3\right)}\)
\(=\frac{2\left(\sqrt{a}+3\right)^2+2\left(\sqrt{a}-3\right)^2}{4\left(a-9\right)}\)\(=\frac{a+9}{a-9}\)
\(B=\dfrac{a+6\sqrt{a}+9+a-6\sqrt{a}+9}{2\left(a-9\right)}=\dfrac{2a+18}{2a-18}\)
Để B<1 thì B-1<0
=>(2a+18-2a+18)/(2a-18)<0
=>2a-18<0
=>0<=a<9