Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
với n >0, ta có :
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)
Gọi biểu thức đã cho là A
\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)
\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)
\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)
\(A=-\sqrt{1}+\sqrt{9}=2\)
a) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\)
\(=\left[-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right]\cdot\left(\sqrt{2}-\sqrt{5}\right)\)
\(=\left(-\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\)
\(=-\left(2-5\right)\)
\(=-\left(-3\right)\)
\(=3\)
b) Ta có:
\(x^2-x\sqrt{3}+1\)
\(=x^2-2\cdot\dfrac{\sqrt{3}}{2}\cdot x+\left(\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
\(=\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\)
Mà: \(\left(x-\dfrac{\sqrt{3}}{2}\right)^2\ge0\forall x\) nên
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(x-\dfrac{\sqrt{3}}{2}\right)^2+\dfrac{1}{4}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}}{2}\)
Vậy: GTNN của biểu thức là \(\dfrac{1}{4}\) tại \(x=\dfrac{\sqrt{3}}{2}\)
a)
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{\sqrt{5}-5}{1-\sqrt{5}}\right):\dfrac{1}{\sqrt{2}-\sqrt{5}}\\ =\left(-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-\dfrac{\sqrt{5}\left(1-\sqrt{5}\right)}{1-\sqrt{5}}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =\left(-\sqrt{2}-\sqrt{5}\right).\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}+\sqrt{5}\right)\left(\sqrt{2}-\sqrt{5}\right)\\ =-\left(\sqrt{2}^2-\sqrt{5}^2\right)\\ =-\left(2-5\right)\\ =-\left(-3\right)\\ =3\)
Phân tích mỗi hạng tử theo kiểu như dưới đây
\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)
\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)
Khi đó mọi mẫu đều bằng -1
Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)
\(\frac{6-\sqrt{6}}{\sqrt{6}-1}+\frac{6+\sqrt{6}}{\sqrt{6}}\)\(=\frac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\frac{6}{\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{6}}\)\(=\sqrt{6}+\frac{6}{\sqrt{6}}+1\)\(=\sqrt{6}\left(1+\frac{\sqrt{6}}{\sqrt{6}}\right)+1\)\(=\sqrt{6}\left(1+1\right)+1\)\(=\sqrt{6}.2+1\)
\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-I\sqrt{20}-3I}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)\(=\sqrt{\sqrt{5}-I\sqrt{5}-1I}\)\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)\(=\sqrt{1}=1\)
\(=\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}+1}-\frac{6}{\sqrt{5}-1}=\frac{\left(\sqrt{5}-1\right)^2-6\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\)
\(=\frac{5-2\sqrt{5}+1-6\sqrt{5}-6}{5-1}=\frac{-8\sqrt{5}}{4}=-2\sqrt{5}\)