Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: a3 + b3 + c3 = 3abc
=>a3+b3+c3-3abc=1/2(a+b+c)((a-b)2+(b-c)2+(c-a)2) =0 (dễ dàng phân tích được bạn tự làm)
=>Có 2 trường hợp
a+b+c=0(loại vì a+b+c khác 0 ) hoặc (a-b)2+(b-c)2+(c-a)2 = 0
Mà (a-b)2 , (b-c)2 , (c-a)2 >= 0 với mọi a,b,c
=>để (a-b)2 + (b-c)2 + (c-a)2 = 0
=>a=b=c
Thay trường hợp a=b=c vào P
=> (2017 +1)(2017+1)(2017+1)=20183
b)Tương tự a+b+c=0
=> a3 + b3 + c3 = 3abc
=>\(A=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ac}\)
\(A=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)
\(A=\frac{3abc}{abc}=3\) Do (a3 +b3 + c3=3abc thay vào)
Ta có: a + b = c <=> a2 + b2 + 2ab = c2 <=> a2 + b2 - c2 = - 2ab
Tương tự: a2 + c2 - b2 = - 2ac
b2 + c2 - a2 = - 2bc
Thế vào ta được
\(\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ac}{a^2+c^2-b^2}=-\frac{ab}{2ab}-\frac{bc}{2bc}-\frac{ac}{2ac}=-6\)
Có a + b + c = 0
=> a + b = - c
=> (a + b)2 = c2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = - 2ab
Tương tự, b2 + c2 - a2 = - 2bc và c2 + a2 - b2 = - 2ca
Do đó \(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ca}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)
a+b+c=0=>a+b=-c=>a2+b2+2ab=c2=>a2+b2-c2=-2ab
Tương tự b2+c2-a2=-2bc,c2+a2-b2=-2ac
=>\(A=\frac{-ab}{2ab}+\frac{-bc}{2bc}+\frac{-ca}{2ca}=\frac{-3}{2}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow abc.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=0\Leftrightarrow\hept{\begin{cases}bc=-\left(ab+ac\right)\\ab=-\left(bc+ac\right)\\ac=-\left(bc+ab\right)\end{cases}}\)
Ta có: \(a^2+2bc=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=\left(a-b\right)\left(a-c\right)\)
Tương tự \(b^2+2ac=\left(b-a\right)\left(b-c\right);c^2+2ab=\left(c-a\right)\left(c-b\right)\)
\(\Leftrightarrow N=\frac{bc}{\left(a-b\right)\left(a-c\right)}+\frac{ac}{\left(b-a\right)\left(b-c\right)}+\frac{ab}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{ab\left(a-b\right)+c^2\left(a-b\right)-c\left(a^2-b^2\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=\frac{\left(a-b\right)\left(b-c\right)\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=1\)
Ta có:\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\frac{ab+bc+ac}{abc}=0\)
\(\Leftrightarrow ab+bc+ac=0\Rightarrow\hept{\begin{cases}ab=-bc-ac\\bc=-ac-ab\\ac=-ab-bc\end{cases}}\)(*)
Thay (*) vào M ta được:
\(M=\frac{1}{a^2+bc-ab-ac}+\frac{1}{b^2+ac-ab-bc}+\frac{1}{c^2+ab-bc-ac}\)
\(=\frac{1}{a\left(a-b\right)-c\left(a-b\right)}+\frac{1}{a\left(c-b\right)-b\left(c-b\right)}+\frac{1}{c\left(c-a\right)-b\left(c-a\right)}\)
\(=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(a-b\right)\left(c-b\right)}-\frac{1}{\left(c-b\right)\left(a-c\right)}\)
\(=\frac{c-b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}-\frac{a-b}{\left(a-b\right)\left(c-b\right)\left(a-c\right)}\)
\(=\frac{c-b+a-c-a+b}{\left(a-b\right)\left(a-c\right)\left(c-b\right)}=0\)
Vậy M = 0
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)
\(\Leftrightarrow\)\(\frac{ab+bc+ca}{abc}=0\)
\(\Rightarrow\)\(ab+bc+ca=0\)
\(\Rightarrow\)\(\hept{\begin{cases}ab=-\left(bc+ca\right)\\bc=-\left(ab+ca\right)\\ca=-\left(ab+bc\right)\end{cases}}\)
\(\Rightarrow\)\(\hept{\begin{cases}a^2+2bc=a^2+bc-ab-ca=\left(a-b\right)\left(a-c\right)\\b^2+2ac=b^2+ac-ab-bc=\left(b-c\right)\left(b-a\right)\\c^2+2ab=c^2+ab-bc-ca=\left(c-a\right)\left(c-b\right)\end{cases}}\)
\(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-a\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}\)
P/S: đến đây tự lm nhé
C=\(\frac{ab}{a^2+\left(b-c\right)\left(c+b\right)}+\frac{bc}{b^2+\left(c-a\right)\left(c+a\right)}\)+\(\frac{ac}{c^2+\left(a-b\right)\left(a+b\right)}\)
Vì a+b+c=0 =>-a=b+c ; -c=a+b ; -b=a+c
=>C=\(\frac{ab}{a^2-a\left(b-c\right)}+\frac{bc}{b^2-b\left(c-a\right)}+\frac{ac}{c^2-c\left(a-b\right)}\)
=\(\frac{ab}{a\left(a-b+c\right)}+\frac{bc}{b\left(b-c+a\right)}+\frac{ac}{c\left(c-a+b\right)}\)
=\(\frac{b}{-2b}+\frac{c}{-2c}+\frac{a}{-2a}\)
=\(\frac{-3}{2}\)