K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2021

\(\frac{5\sqrt{2}-2\sqrt{5}}{\sqrt{5}-\sqrt{2}}+\frac{6}{2-\sqrt{10}}\)

\(=\frac{\sqrt{10}\left(\sqrt{5}-\sqrt{2}\right)}{\sqrt{5}-\sqrt{2}}+\frac{6\left(2+\sqrt{10}\right)}{-6}\)

\(=\sqrt{10}-2-\sqrt{10}=-2\)

31 tháng 7 2019

\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7+2\sqrt{10}}}\)

=\(\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)

\(\frac{\sqrt{3}+3+\sqrt{2}-\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{2}+\sqrt{5}+1-\left(\sqrt{2}+\sqrt{5}\right)}\)

\(\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{5}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{2}-\sqrt{5}}\)

\(\sqrt{3}+\sqrt{5}+3\)

28 tháng 8 2019

Bạn Khanh đúng r chỉ sai chỗ\(\sqrt{5+2\sqrt{6}}=\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\) mới đúng

16 tháng 7 2017

\(\frac{6-\sqrt{6}}{\sqrt{6}-1}+\frac{6+\sqrt{6}}{\sqrt{6}}\)\(=\frac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\frac{6}{\sqrt{6}}+\frac{\sqrt{6}}{\sqrt{6}}\)\(=\sqrt{6}+\frac{6}{\sqrt{6}}+1\)\(=\sqrt{6}\left(1+\frac{\sqrt{6}}{\sqrt{6}}\right)+1\)\(=\sqrt{6}\left(1+1\right)+1\)\(=\sqrt{6}.2+1\)
\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}\)\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}\)\(=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-I\sqrt{20}-3I}}\)\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}\)\(=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)\(=\sqrt{\sqrt{5}-I\sqrt{5}-1I}\)\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)\(=\sqrt{1}=1\)

22 tháng 8 2017

\(\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{2+\sqrt{3}}}{2}-\frac{2}{\sqrt{6}}+\frac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}\right)\)

\(=\frac{\sqrt{2+\sqrt{3}}}{2}:\left(\frac{\sqrt{6\left(2+\sqrt{3}\right)}-4+\sqrt{2\left(2+\sqrt{3}\right)}}{2\sqrt{6}}\right)\)

\(=\frac{\sqrt{2+\sqrt{3}}}{2}.\left(\frac{2\sqrt{6}}{\sqrt{12+6\sqrt{3}}-4+\sqrt{4+2\sqrt{3}}}\right)\)

\(=\frac{\sqrt{6\left(2+\sqrt{3}\right)}}{\left|\sqrt{3}+3\right|-4+\left|\sqrt{3}+1\right|}\)

\(=\frac{\left|\sqrt{3}+3\right|}{\sqrt{3}+3-4+\sqrt{3}+1}\)

\(=\frac{\sqrt{3}+3}{2\sqrt{3}}\)

22 tháng 8 2017

\(\frac{\sqrt{3}+\sqrt{11+6\sqrt{2}}-\sqrt{5+2\sqrt{6}}}{\sqrt{2}+\sqrt{6+2\sqrt{5}}-\sqrt{7-2\sqrt{10}}}\)

\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}\right)^2+6\sqrt{2}+9}-\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{6}+\left(\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}+1}-\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{10}+\left(\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}+\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}}\)

\(=\frac{\sqrt{3}+\sqrt{2}+3-\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}+\sqrt{2}}\)

\(=\frac{3}{2\sqrt{2}+1}\)

a) Đặt \(A=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)

\(A^2=5-2\sqrt{6}+2\sqrt{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}+5+2\sqrt{6}\)

\(=10+2\sqrt{25-4.6}=10+2\sqrt{1}=10+2=12\)

\(\Rightarrow A=\sqrt{12}\)

b)\(\frac{\sqrt{10}-\sqrt{2}}{\sqrt{5}-1}+\frac{2-\sqrt{2}}{\sqrt{2}-1}=\frac{\sqrt{2}.\sqrt{5}-\sqrt{2}}{\sqrt{5}-1}+\frac{\sqrt{2}.\sqrt{2}-\sqrt{2}}{\sqrt{2}-1}\)

\(=\frac{\sqrt{2}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

5 tháng 8 2015

3
%*&%*&%^(*&)(@

20 tháng 7 2016

\(B=\frac{\sqrt{3}+\sqrt{9+2.3.\sqrt{2}+2}-\sqrt{3+2.\sqrt{3}.\sqrt{2}+2}}{\sqrt{2}+\sqrt{5+2\sqrt{5}.1+1}-\sqrt{5+2.\sqrt{5}.\sqrt{2}+2}}\)

      \(=\frac{\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}}{\sqrt{2}+\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)

      \(=\frac{\sqrt{3}+3+\sqrt{2}-\sqrt{3}-\sqrt{2}}{\sqrt{2}+\sqrt{5}+1-\sqrt{5}-\sqrt{2}}\)   

         \(=\frac{3}{1}\)\(=3\)

   

\(=\frac{\sqrt{3}+\text{ |3+\sqrt{2}|}-\text{ |\sqrt{3}+\sqrt{2}|}}{\sqrt{2}+\text{ |\sqrt{5}+1| - \text{ |\sqrt{5}+\sqrt{2}|}}}\)

13 tháng 7 2015

Đặt tử = A , MẪu = B 

=> A = \(\sqrt{3}+\sqrt{9+2.3\sqrt{2}+2}-\sqrt{2+2\sqrt{2}.\sqrt{3}+3}=\sqrt{3}+\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}+3+\sqrt{2}-\sqrt{3}-\sqrt{2}=3\)

Tuwg tự tính B 

ta có B = 1

A/B = 3/1 = 3 

Nhớ ấn đúng nha

27 tháng 7 2018

Bài này khó quá mình không biết làm .