Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1+2^4+2^8+.....+2^{20}}{2^4+2^8+.......+2^{24}}=\frac{1+2^4+2^8+....+2^{20}}{2^4\cdot\left(1+2^4+2^8+...+2^{20}\right)}\)
\(=\frac{1}{2^4}=\frac{1}{16}\)
Ta có :
B = \(\frac{1^2+2^2+..................+2015^2}{2^2.1^2+2^2.2^2+.................+2^2.2015^2}\) = \(\frac{1^2+2^2+...........+2015^2}{2^2.\left(1^2+2^2+...............+2015^2\right)}\) = \(\frac{1}{2^2}=\frac{1}{4}\)
Vậy B = \(\frac{1}{4}\)
k nha bạn, mình nhanh nhất
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
Bài làm của mk hơi tắt nên bạn tự suy luận nhé
\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)=\(\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)=\(\frac{2^{10}.\left(3^8-3^9\right)}{2^{10}.3^8.\left(1+5\right)}\)=\(\frac{-13122}{6561.6}\)=\(-\frac{1}{3}\)
Tính
a)
\(\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{9999}{10000}\\ =\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}....\frac{99.101}{100}\\ \)
\(=\left(\frac{1.2.3...99}{2.3...100}\right).\left(\frac{3.4.5...101}{2.3.4...100}\right)\\ =\frac{1}{100}.\frac{101}{2}=\frac{101}{200}\)
b)
\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\\ < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\\ \)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\\ =1-\frac{1}{n}< 1\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
=> 2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
=> 2S - S = ( \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\) ) - ( \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\))
S = 1 - \(\frac{1}{2^{10}}\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{10}}\)
=> \(2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)
=> \(S=1-\frac{1}{2^{10}}\)
Study well ! >_<
Bạn xem lại đề bài đi mk thấy sai sai hay sao í