\(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2018

Rút gọn:

\(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

= \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}+\sqrt{2}}\)

= \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

= \(\dfrac{2\sqrt{3+\sqrt{5-\left(1+2\sqrt{3}\right)}}}{\sqrt{6}+\sqrt{2}}\)

= \(\dfrac{\sqrt{3+\sqrt{5-\left(1+2\sqrt{3}\right)}}.\left(\sqrt{6}-\sqrt{2}\right)}{2}\)

= \(\dfrac{\sqrt{\left[3+\sqrt{5-\left(1+2\sqrt{3}\right)}\right].6}-\sqrt{\left[3+\sqrt{5-\left(1+2\sqrt{3}\right)}\right].2}}{2}\)

= \(\dfrac{\sqrt{\left(3+\sqrt{5-1-2\sqrt{3}}\right).6}-\sqrt{\left(3+\sqrt{5-1-2\sqrt{3}}\right).2}}{2}\)

= \(\dfrac{\sqrt{\left(3+\sqrt{4-2\sqrt{3}}\right).6}-\sqrt{\left(3+\sqrt{4-2\sqrt{3}}\right).2}}{2}\)

= \(\dfrac{\sqrt{\left[3+\sqrt{\left(1-\sqrt{3}\right)^2}\right].6}-\sqrt{\left[3+\sqrt{\left(1-\sqrt{3}\right)^2}\right].2}}{2}\)

= \(\dfrac{\sqrt{\left(3+\sqrt{3}-1\right).6}-\sqrt{\left(3+\sqrt{3}-1\right).2}}{2}\)

= \(\dfrac{\sqrt{\left(2+\sqrt{3}\right).6}-\sqrt{\left(2+\sqrt{3}\right).2}}{2}\)

= \(\dfrac{\sqrt{12+6\sqrt{3}}-\sqrt{4+2\sqrt{3}}}{2}\)

= \(\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}-\sqrt{\left(1+\sqrt{3}\right)^2}}{2}\)

= \(\dfrac{3+\sqrt{3}-\left(1+\sqrt{3}\right)}{2}\)

= \(\dfrac{3+\sqrt{3}-1-\sqrt{3}}{2}\)

= \(\dfrac{2}{2}\)

= \(1\)

12 tháng 7 2017

\(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+\sqrt{48}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2-\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20+10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

= 5

\(\dfrac{\sqrt{3}-\sqrt{5+\sqrt{24}}+\sqrt{\sqrt{72}+11}}{\sqrt{6+\sqrt{20}}+\sqrt{2}-\sqrt{7+\sqrt{40}}}\)

\(=\dfrac{\sqrt{3}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}+\sqrt{\left(3+\sqrt{2}\right)^2}}{\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{2}-\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}}\)

\(=\dfrac{\sqrt{3}-\sqrt{2}-\sqrt{3}+3+\sqrt{2}}{\sqrt{5}+1+\sqrt{2}-\sqrt{2}-\sqrt{5}}\)

\(=3\)

26 tháng 7 2018

E = \(6x+\sqrt{9x^2-12x+4}\)

E = \(6x+\sqrt{\left(3x-2\right)^2}\)

E = \(6x+\left|3x-2\right|\)

E = \(6x+3x-2\)

E = \(9x-2\)

F = \(5x-\sqrt{x^2+4x+4}\)

F = \(5x-\sqrt{\left(x+2\right)^2}\)

F = \(5x-\left|x+2\right|\)

F = \(5x-x+2\)

F = \(4x+2\)

24 tháng 5 2017

Hỏi đáp Toán

16 tháng 7 2015

\(A=\sqrt[3]{\left(\frac{1}{2}+\frac{1}{2}\sqrt{13}\right)^3}+\sqrt[3]{\left(\frac{1}{2}-\frac{1}{2}\sqrt{13}\right)^3}\)

\(=\frac{1}{2}+\frac{\sqrt{13}}{2}+\frac{1}{2}-\frac{\sqrt{13}}{2}=1\)

\(B=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4\)

17 tháng 8 2020

Bài làm:

a) \(A=\left(\sqrt{3}+1\right)^2+\frac{5}{4}\sqrt{48}-\frac{2}{\sqrt{3+1}}\)

\(A=3+2\sqrt{3}+1+\sqrt{\frac{25.48}{16}}-\frac{2}{\sqrt{4}}\)

\(A=4+2\sqrt{3}+\sqrt{25.3}-\frac{2}{2}\)

\(A=4+2\sqrt{3}+5\sqrt{3}-1\)

\(A=3+7\sqrt{3}\)

b) \(\frac{4}{3-\sqrt{5}}-\frac{3}{\sqrt{5}+\sqrt{2}}-\frac{1}{\sqrt{2}-1}\)

\(=\frac{4\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}-\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}\)

\(A=\frac{4\left(3+\sqrt{5}\right)}{9-5}-\frac{3\left(\sqrt{5}-\sqrt{2}\right)}{5-2}-\frac{\sqrt{2}+1}{2-1}\)

\(A=3+\sqrt{5}-\sqrt{5}+\sqrt{2}-\sqrt{2}-1\)

\(A=2\)

17 tháng 8 2020

Phần b mình viết nhầm tên thành A, bn sửa thành B nhé

c) \(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)

\(C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)

\(C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(C=\sqrt{3}-1-2-\sqrt{3}\)

\(C=-3\)

25 tháng 7 2019

\(a,\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\left(Đk:x\ge1\right)\)

\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)

\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)

\(=|\sqrt{x-1}-1|+|\sqrt{x-1}+1|\)

\(=\sqrt{x-1}-1+\sqrt{x-1}+1=2\sqrt{x-1}\)(Ko chắc:v)

\(b,\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)