Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3\left(x^2-4\right)}{2x^2-8x+8}\)
\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x^2-4x+4\right)}\)
\(=\dfrac{x-2}{x+2}\cdot\left(\dfrac{5x+10}{7\left(x-2\right)}+\dfrac{1}{3}\right)+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)
\(=\dfrac{x-2}{x+2}\cdot\dfrac{3\left(5x+10\right)+7\left(x-2\right)}{21\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)
\(=\dfrac{1}{x+2}\cdot\dfrac{15x+30+7x-14}{21}+\dfrac{3x+6}{2\left(x-2\right)}\)
\(=\dfrac{22x+16}{21\left(x+2\right)}+\dfrac{3x+6}{2\left(x-2\right)}\)
\(=\dfrac{2\left(x-2\right)\left(22x+16\right)+21\left(x+2\right)\left(3x+6\right)}{42\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{\left(2x-4\right)\left(22x+16\right)+\left(21x+42\right)\left(3x+6\right)}{42\left(x^2-4\right)}\)
\(=\dfrac{44x^2+32x-88x-64+63x^2+126x+126x+252}{42x^2-168}\)
\(=\dfrac{107x^2+196x+188}{42x^2-168}\)
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
Giải:
a) \(8\left(3x-2\right)-13x=5\left(12-3x\right)+7x\)
\(\Leftrightarrow24x-16-13x=60-15x+7x\)
\(\Leftrightarrow24x-13x+15x-7x=60+16\)
\(\Leftrightarrow19x=76\)
\(\Leftrightarrow x=\dfrac{76}{19}=4\)
Vậy ...
b) \(\dfrac{5x}{x+2}-\dfrac{3}{x-2}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\) (1)
ĐKXĐ: \(x\ne\pm2\)
\(\left(1\right)\Leftrightarrow\dfrac{5x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{3x^2+6}{\left(x-2\right)\left(x+2\right)}=0\)
\(\Leftrightarrow5x\left(x-2\right)-3\left(x+2\right)+3x^2+6=0\)
\(\Leftrightarrow5x^2-10x-3x-6+3x^2+6=0\)
\(\Leftrightarrow8x^2-13x=0\)
\(\Leftrightarrow x\left(8x-13\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\8x-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TM\right)\\x=\dfrac{13}{8}\left(TM\right)\end{matrix}\right.\)
Vậy ...
c) \(\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2x+2}=\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\) (2)
ĐKXĐ: \(x\ne-1;x\ne3\)
\(\left(2\right)\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{4x}{2\left(x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)=4x\)
\(\Leftrightarrow x\left(x+1+x-3\right)=4x\)
\(\Leftrightarrow x\left(2x-2\right)=4x\)
\(\Leftrightarrow2x-2=4\)
\(\Leftrightarrow x=3\)
Vậy ...
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)
ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn
bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3x^2-12}{2x^2-8x+8}\)
\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)
\(D=\dfrac{x-2}{x+2}.\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}.\dfrac{x-2}{x+2}+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)
\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)
\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)
\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)}{2\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)
\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)+3x+2}{2\left(x-2\right)}\)
\(D=\dfrac{5}{7}-\dfrac{2x+4}{2\left(x-2\right)}\)
\(D=\dfrac{5}{7}+\dfrac{2\left(x-2\right)}{2\left(x-2\right)}=\dfrac{5}{7}+\dfrac{x-2}{x-2}\)
\(D=\dfrac{5}{7}+1=\dfrac{12}{7}\)
Vậy \(D=\dfrac{12}{7}\)