\(\frac{\Pi}{2}\)-x)-sin(\(\Pi\)-x)+tan(<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2020

Nhìn đề bài hãi quá :(

a/ \(A=3\sin\left(5.2\pi+\pi-x\right).\sin\left(2\pi+\frac{\pi}{2}-x\right)+2\sin\left(4.2\pi+\pi+x\right)\)

\(A=3\sin\left(\pi-x\right).\sin\left(\frac{\pi}{2}-x\right)+2\sin\left(\pi+x\right)\)

\(A=3\sin x.\cos x-2\sin x=\sin x\left(3\cos x-2\right)\)

b/ \(B=\sin\left(5.2.180^0+180^0+x\right)-\cos\left(90^0-x\right)+\tan\left(90^0+180^0-x\right)+\cot\left(2.180^0-x\right)\)

\(B=\sin\left(180^0+x\right)-\sin x+\tan\left(90^0-x\right)+\cot\left(-x\right)\)

\(B=-\sin x-\sin x+\cot x-\cot x=-2\sin x\)

c/ \(C=-2\sin\left(-(2\pi+\frac{\pi}{2}-x)\right)-3\cos\left(2\pi+\pi-x\right)+5\sin\left(2.2\pi-\left(\frac{\pi}{2}+x\right)\right)+\cot\left(\pi+\frac{\pi}{2}-x\right)\)

\(C=2\sin\left(\frac{\pi}{2}-x\right)-3\cos\left(\pi-x\right)-5\sin\left(\frac{\pi}{2}+x\right)+\cot\left(\frac{\pi}{2}-x\right)\)

\(2\cos x+3\cos x-5\cos x+\tan x=\tan x\)

11 tháng 5 2020

d/ \(D=\tan\left(-\left(\pi-x\right)\right).\cos\left(-\left(\frac{\pi}{2}-x\right)\right).\left(-\cos x\right)\)

\(D=\tan\left(\pi-x\right).\cos\left(\frac{\pi}{2}-x\right).\cos x\)

\(D=-\tan x.\sin x.\cos x=-\sin^2x\)

e/ \(E=\cos\left(28.2\pi+\pi+\frac{\pi}{2}-x\right)+\sin\left(-\left(58.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\cos\left(-\left(46.2\pi+\pi+\frac{\pi}{2}-x\right)\right)+\sin\left(35.2\pi+\pi+\frac{\pi}{2}-x\right)\)

\(E=-\cos\left(\frac{\pi}{2}-x\right)+\sin\left(\frac{\pi}{2}-x\right)-\cos\left(\frac{\pi}{2}-x\right)-\sin\left(\frac{\pi}{2}-x\right)\)

\(E=-2\sin x\)

Thôi, stop ở đây, làm nữa chắc tẩu hỏa nhập ma quá :(

Mình thấy hầu hết các bài này đều có chung 1 điểm, và chắc đó cũng là điểm mà bạn thắc mắc: Đó chính là tách các hạng tử ra và biến đổi

Tách cũng đơn giản thôi, cứ gặp sin, cos thì tách sao cho về dạng 2pi+..., gặp tan, cot thì pi.

Còn tách mấy cái phân số như vầy:

Ví dụ \(\frac{7\pi}{2}\) , 7 chia 2 được 3, ta lấy \(\frac{7}{2}-3=\frac{1}{2}\) thì suy ra: \(\frac{7\pi}{2}=3\pi+\frac{\pi}{2}\)

Đó, thế là được :D

9 tháng 5 2016

a) P = cos(\(\frac{\Pi}{2}\) + x) + cos(2π - x) + cos(3π + x)   = -sinx + cosx - cosx = -sinx

13 tháng 5 2020

Ko hiểu chỗ nào bạn???

13 tháng 5 2020
https://i.imgur.com/XnWPWW8.jpg
NV
14 tháng 4 2019

a/

\(\frac{1}{sinx}+\frac{cosx}{sinx}=\frac{1+cosx}{sinx}=\frac{1+2cos^2\frac{x}{2}-1}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2cos^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{cos\frac{x}{2}}{sin\frac{x}{2}}=cot\frac{x}{2}\)

b/

\(\frac{1-cosx}{sinx}=\frac{1-\left(1-2sin^2\frac{x}{2}\right)}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{2sin^2\frac{x}{2}}{2sin\frac{x}{2}cos\frac{x}{2}}=\frac{sin\frac{x}{2}}{cos\frac{x}{2}}=tan\frac{x}{2}\)

c/

\(tan\frac{x}{2}\left(\frac{1}{cosx}+1\right)=\left(\frac{1-cosx}{sinx}\right)\left(\frac{1}{cosx}+1\right)=\frac{\left(1-cosx\right)\left(1+cosx\right)}{sinx.cosx}=\frac{1-cos^2x}{sinx.cosx}\)

\(=\frac{sin^2x}{sinx.cosx}=\frac{sinx}{cosx}=tanx\)

d/

\(\frac{sin2a}{2cosa\left(1+cosa\right)}=\frac{2sina.cosa}{2cosa\left(1+2cos^2\frac{a}{2}-1\right)}=\frac{sina}{2cos^2\frac{a}{2}}=\frac{2sin\frac{a}{2}cos\frac{a}{2}}{2cos^2\frac{a}{2}}=tan\frac{a}{2}\)

e/

\(cotx+tan\frac{x}{2}=\frac{cosx}{sin}+\frac{1-cosx}{sinx}=\frac{cosx+1-cosx}{sinx}=\frac{1}{sinx}\)

Các câu c, e đều sử dụng kết quả từ câu b

NV
14 tháng 4 2019

f/

\(3-4cos2x+cos4x=3-4cos2x+2cos^22x-1\)

\(=2cos^22x-4cos2x+2=2\left(cos^22x-2cos2x+1\right)\)

\(=2\left(cos2x-1\right)^2=2\left(1-2sin^2x-1\right)^2\)

\(=2.\left(-2sin^2x\right)^2=8sin^4x\)

g/

\(\frac{1-cosx}{sinx}=\frac{sinx\left(1-cosx\right)}{sin^2x}=\frac{sinx\left(1-cosx\right)}{1-cos^2x}=\frac{sinx\left(1-cosx\right)}{\left(1-cosx\right)\left(1+cosx\right)}=\frac{sinx}{1+cosx}\)

h/

\(sinx+cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}+cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}+cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\)

i/

\(sinx-cosx=\sqrt{2}\left(sinx.\frac{\sqrt{2}}{2}-cosx.\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(sinx.cos\frac{\pi}{4}-cosx.sin\frac{\pi}{4}\right)=\sqrt{2}sin\left(x-\frac{\pi}{4}\right)\)

j/

\(cosx-sinx=\sqrt{2}\left(cosx.\frac{\sqrt{2}}{2}-sinx\frac{\sqrt{2}}{2}\right)\)

\(=\sqrt{2}\left(cosx.cos\frac{\pi}{4}-sinx.sin\frac{\pi}{4}\right)=\sqrt{2}cos\left(x+\frac{\pi}{4}\right)\)

NV
22 tháng 4 2020

\(P=cos\left(-x\right).tanx-cotx.\left(-cotx\right)\)

\(=cosx.tanx+cot^2x=sinx+cot^2x\)

\(=sinx+\frac{1}{1+sin^2x}=-\frac{1}{3}+\frac{1}{1+\frac{1}{9}}=\frac{17}{30}\)

NV
19 tháng 6 2020

\(=cos\left(2\pi+\frac{\pi}{2}-x\right)-2sin\left(2\pi-\frac{\pi}{2}-x\right)+cos\left(4\pi+\pi-x\right)-sin\left(x+\frac{\pi}{2}-2\pi\right)\)

\(=cos\left(\frac{\pi}{2}-x\right)+2sin\left(\frac{\pi}{2}+x\right)+cos\left(\pi-x\right)-sin\left(x+\frac{\pi}{2}\right)\)

\(=sinx+2cosx-cosx-cosx=sinx\)

NV
20 tháng 6 2019

\(0< a< \frac{\pi}{2}\Rightarrow sina;cosa;tana>0\)

\(tana+\frac{1}{tana}=3\Leftrightarrow tan^2a-3tana+1=0\) \(\Rightarrow\left[{}\begin{matrix}tana=\frac{3-\sqrt{5}}{2}\\tana=\frac{3+\sqrt{5}}{2}\end{matrix}\right.\)

- Với \(tana=\frac{3-\sqrt{5}}{2}\)

\(\Rightarrow cota=\frac{1}{tana}=\frac{3+\sqrt{5}}{2}\)

\(1+tan^2a=\frac{1}{cos^2a}\Rightarrow cosa=\frac{1}{\sqrt{1+tan^2a}}=\frac{2}{\sqrt{18-6\sqrt{5}}}\)

\(sina=\sqrt{1-cos^2a}=\frac{2}{\sqrt{18+6\sqrt{5}}}\)

\(cos\left(\frac{3\pi}{2}-a\right)=cos\left(2\pi-\frac{\pi}{2}-a\right)=-sina=...\)

\(sin\left(2\pi+a\right)=sina=...\)

\(tan\left(\pi-a\right)=-tana=...\)

\(cot\left(\pi+a\right)=cota=...\)

TH2: \(tana=\frac{3+\sqrt{5}}{2}\)

Tương tự như trên

NV
17 tháng 5 2020

a/ \(\pi< x< \frac{3\pi}{2}\Rightarrow sinx< 0\)

\(\Rightarrow sinx=-\sqrt{1-cos^2x}=-\frac{5}{13}\)

\(sin\left(\frac{\pi}{3}-x\right)=sin\frac{\pi}{3}cosx-cos\frac{\pi}{3}sinx=\frac{\sqrt{3}}{2}.\left(-\frac{12}{13}\right)-\frac{1}{2}.\left(-\frac{5}{13}\right)=\frac{5-12\sqrt{3}}{26}\)

b/ \(\pi< x< \frac{3\pi}{2}\Rightarrow cosx< 0\)

\(\Rightarrow cosx=-\sqrt{1-sin^2x}=-\frac{3}{5}\)

\(cot\left(x-\frac{\pi}{4}\right)=\frac{cos\left(x-\frac{\pi}{4}\right)}{sin\left(x-\frac{\pi}{4}\right)}=\frac{sinx+cosx}{sinx-cosx}=7\)

c/ \(cot\left(\frac{5\pi}{2}-x\right)=cot\left(2\pi+\frac{\pi}{2}-x\right)=tanx=2\)

\(\Rightarrow tan\left(x+\frac{\pi}{4}\right)=\frac{tanx+tan\frac{\pi}{4}}{1-tanx.tan\frac{\pi}{4}}=\frac{2+1}{1-2.1}=-3\)

17 tháng 5 2020

tính giá tri biểu thức ạ e quên chưa ghi