Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ĐK \(a>0\)và \(a\ne1\)
. \(M=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right).\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\frac{\sqrt{a}-1}{\sqrt{a}}\)
b. Ta có \(M-1=\frac{\sqrt{a}-1}{\sqrt{a}}-1=\frac{\sqrt{a}-1-\sqrt{a}}{\sqrt{a}}=\frac{-1}{\sqrt{a}}< 0\)
Vậy \(M< 1\)
bài n t vừa làm mà, vào link này nhé
https://olm.vn/hoi-dap/question/1129328.html
\(a,ĐKXĐ:a\ge0;a\ne4\)
\(P=\frac{\sqrt{a}+1}{\sqrt{a}-2}+\frac{2\sqrt{a}}{\sqrt{a}+2}-\frac{5\sqrt{a}+2}{a-4}\)
\(=\frac{\sqrt{a}+1}{\sqrt{a}-2}+\frac{2\sqrt{a}}{\sqrt{a}+2}-\frac{5\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}+2\right)+2\sqrt{a}\left(\sqrt{a}-2\right)-5\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{a+3\sqrt{a}+2+2a-4\sqrt{a}-5\sqrt{a}-2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{3a-6\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\frac{3\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}=\frac{3\sqrt{a}}{\sqrt{a}+2}\)
\(b,P=2\Rightarrow\frac{3\sqrt{a}}{\sqrt{a}+2}=2\)
\(\Rightarrow3\sqrt{a}=2\left(\sqrt{a}+2\right)\)
\(\Rightarrow3\sqrt{a}=2\sqrt{a}+4\)
\(\Rightarrow3\sqrt{a}-2\sqrt{a}=4\)
\(\Rightarrow\sqrt{a}=4\)
\(\Rightarrow a=16\)
Từ giả thiết, ta có
\(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=4\Rightarrow a+b+c+2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)=4\)
=>\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\)
Tháy vào, ta có M=\(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+a}{\sqrt{a}+\sqrt{b}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+b}{\sqrt{b}+\sqrt{c}}+\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}+c}{\sqrt{a}+\sqrt{c}}\)
=\(\frac{\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{b}}+\frac{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}{\sqrt{b}+\sqrt{c}}+\frac{\left(\sqrt{c}+\sqrt{a}\right)\left(\sqrt{c}+\sqrt{b}\right)}{\sqrt{a}+\sqrt{c}}\)
=\(\sqrt{a}+\sqrt{c}+\sqrt{b}+\sqrt{a}+\sqrt{c}+\sqrt{b}=2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)=4\)
Vậy M=4
^_^
C = ( đến chõ cuối nhe ) \(\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)=a-1\)