Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow4A=2^2+2^4+2^6+...+2^{102}\\ \Rightarrow4A-A=2^2+2^4+...+2^{102}-1-2^2-2^4-...-2^{100}\\ \Rightarrow3A=2^{102}-1\\ \Rightarrow A=\dfrac{2^{102}-1}{3}\)
A= 1 + 2\(^2\) + 2\(^4\) +...+ 2\(^{100}\)
⇔2\(^2\)A=2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)
⇔4A−A=(2\(^2\)+2\(^4\)+2\(^6\)+2\(^8\)+....+2\(^{100}\)+2\(^{102}\)) − (1+2\(^2\)+2\(^4\)+2\(^6\)+....+2\(^{98}\)+2\(^{100}\))
⇔3A=2\(^{102}\)−1
⇔S=\(\dfrac{2^{102}-1}{3}\)
\(A=\dfrac{1+2+...+9}{11+12+...+19}=\dfrac{\left(9+1\right)\times9:2}{\left(19+11\right)\times9:2}=\dfrac{45}{135}=\dfrac{1}{3}\)
a: \(=\dfrac{21\cdot11}{22\cdot9}=\dfrac{1}{2}\cdot\dfrac{7}{3}=\dfrac{7}{6}\)
b: \(=\dfrac{49\cdot8}{10}=49\cdot\dfrac{4}{5}=\dfrac{196}{5}\)
c: \(=\dfrac{12\cdot\left(-4\right)}{32\cdot6}=\dfrac{-48}{192}=-\dfrac{1}{4}\)
a: \(=\dfrac{13\cdot\left(9-2\right)}{13}=7\)
b: \(=\dfrac{14\left(3-8\right)}{7\left(1+3\cdot3\right)}=2\cdot\dfrac{-5}{10}=-1\)
c: \(=\dfrac{54-72}{36}=\dfrac{-18}{36}=-\dfrac{1}{2}\)
d: \(=\dfrac{5^3}{10^2\cdot5}=\dfrac{5^2}{100}=\dfrac{1}{4}\)
a) \(\dfrac{11\cdot8-11\cdot3}{17-6}\)
\(=\dfrac{11\cdot\left(8-3\right)}{11}=5\)
b) \(\dfrac{24-12\cdot13}{12+4\cdot9}\)
\(=\dfrac{12\cdot\left(2-13\right)}{12\left(1+3\right)}=\dfrac{-11}{4}\)
\(a,\dfrac{583}{352}=\dfrac{53}{32}\\ b,\dfrac{121212}{313131}=\dfrac{12}{31}\\ c,\dfrac{153.24-153.11}{160-7}=\dfrac{153\left(24-11\right)}{153}=13\)