Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{4-\left(2+\sqrt{2+\sqrt{3}}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2+\sqrt{2+\sqrt{3}}}.\sqrt{2-\sqrt{2+\sqrt{3}}}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{4-\left(2+\sqrt{3}\right)}\)
\(=\sqrt{2+\sqrt{3}}.\sqrt{2-\sqrt{3}}=1\)
b/ \(x=\sqrt[3]{1+\sqrt{65}}+\sqrt[3]{1-\sqrt{65}}\)
\(\Rightarrow x^3=2+3\sqrt[3]{1-65}.x\)
\(\Rightarrow x^3=2-12x\)
\(\Rightarrow x^3+12x=2\)
\(\Rightarrow Q=2+2009=2011\)
\(S=\frac{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)+\left(2x-\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{x\sqrt{x}-2x+2\sqrt{x}-1+2x\sqrt{x}+x-2\sqrt{x}-1-3x\sqrt{x}+2x-\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{x-\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)
\(S=\frac{1}{\sqrt{x}+1}\)
Vậy \(S=\frac{1}{\sqrt{x}+1}\)
\(=\sqrt{5.\left(\sqrt{3}+1\right)}.\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}\)
\(=\sqrt{5}.\left(\sqrt{3}+1\right).\sqrt{48-10.\left(2+\sqrt{3}\right)}\)
\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{28-10\sqrt{3}}\)
\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{\left(5-\sqrt{3}\right)^2}\)
\(=\left(\sqrt{15}+\sqrt{5}\right).\left(5-\sqrt{3}\right)\)
Vậy...
~ Chắc chắn đúng cậu nhé ~ Tiếc gì 1 tk cho tớ nào?
b, ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\)
\(\Leftrightarrow x=7\left(tm\right)\)
a, ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)
\(\Leftrightarrow2\sqrt{x-5}+6=0\)
\(\Leftrightarrow\sqrt{x-5}=-3\)
Phương trình vô nghiệm
\(\sqrt[3]{1+\sqrt{65}}-\sqrt[3]{\sqrt{65}-1}=\sqrt[3]{1+\sqrt{65}}+\sqrt[3]{1-\sqrt{65}}\).
Đặt \(a=\sqrt[3]{1+\sqrt{65}}\); \(b=\sqrt[3]{1-\sqrt{65}}\). Ta có: \(\hept{\begin{cases}a^3+b^3=2\\ab=-4\end{cases}}\)Suy ra:
\(\left(a+b\right)^3=2-12\left(a+b\right)\Leftrightarrow\left(a+b\right)^3+12\left(a+b\right)-2=0\Leftrightarrow a+b=...\)(Giải pt bậc 3 bằng máy tính)