Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{11+4\sqrt{6}}=\sqrt{8+4\sqrt{6}+3}=\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}=2\sqrt{2}+\sqrt{3}\)
\(\sqrt{11+4\sqrt{6}}\)=\(\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}.\sqrt{3}+\left(\sqrt{3}\right)^3}\)=\(\sqrt{\left(2\sqrt{2}+\sqrt{3}\right)^2}\)=\(2\sqrt{2}\)+\(\sqrt{3}\)
\(\sqrt{25-2.5.\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
\(\sqrt{121+2.11.\sqrt{2}+2}=\sqrt{\left(11+\sqrt{2}\right)^2}=11+\sqrt{2}\)
\(\sqrt{\frac{9}{2}-2.\frac{3}{\sqrt{2}}.\frac{\sqrt{5}}{\sqrt{2}}+\frac{5}{2}}=\sqrt{\left(\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}\right)^2}=\frac{3}{\sqrt{2}}-\frac{\sqrt{5}}{\sqrt{2}}=\frac{3\sqrt{2}-\sqrt{10}}{2}\)
a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)
\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)
\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)
\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)
\(=5-\sqrt{15}+\sqrt{15}-3\)
\(=2\)
b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)
\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)
\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)
\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)
\(=4\sqrt{10}+4\sqrt{2}\)
c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)
\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)
\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)
\(=5\sqrt{7}\)
d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)
\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)
\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)
\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)
\(=\dfrac{1+12\sqrt{2}}{4}\)
e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)
\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)
\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)
\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)
f) bạn xem đề lại nhé
\(\sqrt{2-2.\frac{1}{2}\sqrt{2}+\frac{1}{4}}.\sqrt{8-2.2\sqrt{2}.\frac{1}{4}+\frac{1}{16}}=\sqrt{\left(\sqrt{2}-\frac{1}{2}\right)^2}\sqrt{\left(2\sqrt{2}-\frac{1}{4}\right)^2}\)
\(=\left(\sqrt{2}-\frac{1}{2}\right)\left(2\sqrt{2}-\frac{1}{4}\right)=\frac{33-10\sqrt{2}}{8}\)
\(\sqrt{2+2\sqrt{2}+1}.4\sqrt{\frac{288+2\sqrt{288}+1}{16}}=\sqrt{\left(\sqrt{2}+1\right)^2}.4\sqrt{\frac{\left(12\sqrt{2}+1\right)^2}{4^2}}\)
\(=\left(\sqrt{2}+1\right)\left(12\sqrt{2}+1\right)=25+13\sqrt{2}\)
\(\sqrt{28-10\sqrt{3}}=\sqrt{25-2.5\sqrt{3}+3}=\sqrt{\left(5-\sqrt{3}\right)^2}=5-\sqrt{3}\)
\(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}\right)^2+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt{x-1}+1\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}+1=2\\\sqrt{x-1}+1=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-1}=1\Leftrightarrow x-1=1\Leftrightarrow x=2\\\sqrt{x-1}=-3\left(vl\right)\end{cases}}\)
Vậy phương trình có tập nghiệm \(S=\left\{2\right\}\)