Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{(x-3)^2(2x+5)}{(3x-1)(x-3)^2}(ĐK:x\ne3,x\ne\frac{1}{3})\)
\(=\frac{2x+5}{3x-1}\)
Còn bài b bạn tự làm nhé
Điều kiện: \(x\ne\left\{-1;-2;-5\right\}\)
\(\frac{x^3+x^2-4x-4}{x^3+8x^2+17x+10}=\frac{x^2\left(x+1\right)-4\left(x+1\right)}{x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-4\right)}{\left(x+1\right)\left(x^2+7x+10\right)}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]}\)
\(=\frac{\left(x+1\right)\left(x-2\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+5\right)}=\frac{x-2}{x+5}\)
Điều kiện: \(x\ne\left\{3;\frac{1}{3}\right\}\)
\(\frac{2x^3-7x^2-12x+45}{3x^3-19x^2+33x-9}=\frac{2x^3-6x^2-x^2+3x-15x+45}{3x^3-9x^2-10x^2+30x+3x-9}\)
\(=\frac{2x^2\left(x-3\right)-x\left(x-3\right)-15\left(x-3\right)}{3x^2\left(x-3\right)-10x\left(x-3\right)+3\left(x-3\right)}\)
\(=\frac{\left(x-3\right)\left(2x^2-x-15\right)}{\left(x-3\right)\left(3x^2-10x+3\right)}\)
\(=\frac{2x^2-x-15}{3x^2-10x+3}=\frac{2x\left(x-3\right)+5\left(x-3\right)}{3x\left(x-3\right)-\left(x-3\right)}\)
\(=\frac{\left(2x+5\right)\left(x-3\right)}{\left(3x-1\right)\left(x-3\right)}=\frac{2x+5}{3x-1}\)
`a,(25xy^3(2x-y)^2)/(75xy^2(y-2x))(x,y ne 0)(y ne 2x)`
`=(25xy^3(y-2x)^2)/(75xy^2(y-2x))`
`=(y(y-2x))/3`
`b,(x^2-y^2)/(x^2-y^2+xz-yz)`
`=((x-y)(x+y))/((x-y)(x+y)+z(x-y))`
`=(x+y)/(x+y+z)`
`c,((2x+3)-x^2)/(x^2-1)(x ne +-1)`
`=(-(x^2-3x+x-3))/((x-1)(x+1))`
`=(-x(x-3)+x-3)/((x-1)(x+1))`
`=((x-3)(1-x))/((x-1)(x+1))`
`=(3-x)/(1+x)`
`d,(3x^3-7x^2+5x-1)/(2x^3-x^2-4x+3)`
`=(3x^3-3x^2-4x^2+4x+x-1)/(2x^3-2x^2+x^2-x-3x+3)`
`=(3x^2(x-1)-4x(x-1)+x-1)/(2x^2(x-1)+x(x-1)-3(x-1))`
`=(3x^2-4x+1)/(2x^2+x-3)`
`=(3x^2-3x-x+1)/(2x^2-2x+3x-3)`
`=(3x(x-1)-(x-1))/(2x(x-1)+3(x-1))`
`=(3x-1)/(2x+3)`
a) Ta có: \(\dfrac{25xy^3\cdot\left(2x-y\right)^2}{75xy^2\cdot\left(y-2x\right)}\)
\(=\dfrac{25xy^2\cdot y\cdot\left(y-2x\right)^2}{25xy\cdot y\cdot\left(y-2x\right)\cdot3}\)
\(=\dfrac{y\left(y-2x\right)}{3}\)
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\\ \)
\(=\frac{3x^2-4x+1}{2x^2+x-3}=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)+\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+1\right)}=\frac{3x-1}{2x+1}\)
\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)
\(=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}\)
\(=\frac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)
\(=\frac{\left(3x^2-4x+1\right)\left(x-1\right)}{\left(2x^2+x-3\right)\left(x-1\right)}\)
\(=\frac{3x^2-4x+1}{2x^2+x-3}\)
\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)
\(=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)-\left(3x-3\right)}\)
\(=\frac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x-1\right)-3\left(x-1\right)}\)
\(=\frac{3x-1}{2x-3}\)
Câu 1:
\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)
Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)
a) \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)
= \(\dfrac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)
= \(\dfrac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)
=\(\dfrac{\left(x-1\right)\left(3x^2-4x+1\right)}{\left(x-1\right)\left(2x^2-x-3\right)}\)
= \(\dfrac{3x^2-3x-x+1}{2x^2+2x-3x-3}\)
= \(\dfrac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x+1\right)-3\left(x+1\right)}\)
= \(\dfrac{\left(x-1\right)\left(3x-1\right)}{\left(x+1\right)\left(2x-3\right)}\)
Mình không chắc là đúng hoàn toàn nha!
b) \(\dfrac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)
= \(\dfrac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)
= \(\dfrac{x^3-6x^2y}{x-6y}\)
= \(\dfrac{x^2\left(x-6y\right)}{x-6y}\)
= \(x^2\)
ĐKXĐ: \(x\ne1;x\ne-\dfrac{3}{2}\)
Ta có: \(\dfrac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\dfrac{\left(x-1\right)^2\left(3x-1\right)}{\left(x-1\right)^2\left(2x+3\right)}=\dfrac{3x-1}{2x+3}\)