Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=\frac{\left(2\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}{1}+\frac{\left(2-3\sqrt{2}\right)\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\)
\(=3+\sqrt{2}+\frac{-7\sqrt{2}}{7}=3\)
c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{43+30\sqrt{2}}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
Mình đưa ra đáp án thôi nhé :)
a/ \(\left(\sqrt{\frac{5}{3}-\sqrt{\frac{3}{5}}}\right).\sqrt{15}=\sqrt{25-3\sqrt{15}}\)
b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=3\)
c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\)
1. \(=\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}+\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{5-2\sqrt{3}-1}+\sqrt{3+2\sqrt{3}+1}=\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
1/ \(\sqrt{5-\sqrt{13+4\sqrt{3}}}+\sqrt{3+\sqrt{13+4\sqrt{3}}}\)
\(=\sqrt{5-\left(1+\sqrt{12}\right)^2}+\sqrt{3+\left(1+\sqrt{12}\right)^2}\)
\(=\sqrt{5-\left|1+\sqrt{12}\right|}+\sqrt{3+\left|1+\sqrt{12}\right|}\)
\(=\sqrt{5-1-\sqrt{12}}+\sqrt{3+1+\sqrt{12}}\)
\(=\sqrt{4-\sqrt{12}}+\sqrt{4+\sqrt{12}}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=\left|\sqrt{3}-1\right|+\left|\sqrt{3}+1\right|\)
\(=\sqrt{3}-1+\sqrt{3}+1=2\sqrt{3}\)
b)\(\sqrt{m+2\sqrt{m-1}}+\sqrt{m-2\sqrt{m-1}}\)
\(\Leftrightarrow\sqrt{m-1+2\sqrt{m-1}+1}+\sqrt{m-1-2\sqrt{m-1}+1}\)
\(\Leftrightarrow\sqrt{\left(\sqrt{m-1}+1\right)^2}+\sqrt{\left(\sqrt{m-1}-1\right)^2}\)
\(\Leftrightarrow\sqrt{m-1}+1+\sqrt{m-1}-1\Leftrightarrow2\sqrt{m-1}\)
Câu 1 phá từng lớp ra :VD\(9+4\sqrt{2}\) =\((\sqrt{2}+2)^2\)
Câu 2:m+2\(\sqrt{m-1}\) =m-1+1+2\(\sqrt{m-1}\) =\((\sqrt{m-1} -1)^2 \)
a) \(4x-\sqrt{x^2-4x+4}=4x-\sqrt{\left(x-2\right)^2}=4x-\left(x-2\right)=3x+2\)
b) \(3x+\sqrt{9+6x+x^2}=3x+\sqrt{\left(x+3\right)^2}=3x-\left(x+3\right)=2x-3\)
c) \(\frac{x+6\sqrt{x}+9}{x-9}=\frac{\left(\sqrt{x}+3\right)^2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\sqrt{x}-3}\)
d) \(\frac{\sqrt{x^2+4x+4}}{x+2}=\frac{\sqrt{\left(x+2\right)^2}}{x+2}=\frac{\left|x+2\right|}{x+2}\)( 1 )
với x < -2 thì : \(\left(1\right)\Leftrightarrow\frac{-\left(x+2\right)}{x+2}=-1\)
với x > -2 thì : \(\left(1\right)\Leftrightarrow\frac{\left(x+2\right)}{x+2}=1\)
\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)
Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có:
\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3B\sqrt[3]{25-52}\)
\(=10-9B\)
Giải PT: \(B^3+9B-10=0\Leftrightarrow B^3-1+9B-9=0\)\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+1\right)+9\left(B-1\right)=0\)
\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+10\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}B-1=0\\B^2+2B+1+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+1\right)^2=-9\left(L\right)\end{cases}}}\)
Vậy \(B=1\)
À chết mình làm nhầm, phải là \(\left(B-1\right)\left(B^2+B+1\right)\) nha, \(\left(B-1\right)\left(B^2+B+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}B=1\\B^2+2.\frac{1}{2}B+\frac{1}{4}-\frac{1}{4}+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2+\frac{7}{4}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2=-\frac{7}{4}\left(L\right)\end{cases}}\)